
Rubrix
Release 0.1.1.dev0+gf4ed7bd.d20210614

Recognai

Jun 14, 2021

GETTING STARTED

1 What’s Rubrix? 3

2 Quickstart 5

3 Use cases 7

4 Design Principles 9

5 Next steps 11

6 Community 13
6.1 Setup and installation . 13

6.1.1 1. Install the Rubrix Python client . 13
6.1.2 2. Setup and launch the webapp . 13
6.1.3 3. Testing the installation by logging some data . 14
6.1.4 Next steps . 15

6.2 Concepts . 15
6.2.1 Rubrix Data model . 15
6.2.2 Methods . 18

6.3 Tasks . 18
6.3.1 Supported tasks . 18
6.3.2 Tasks on the roadmap . 19

6.4 Monitoring and collecting data from third-party apps . 19
6.4.1 What does our streamlit app do? . 20
6.4.2 How to run the app . 20
6.4.3 Rubrix integration . 20

6.5 Rubrix Cookbook . 21
6.5.1 Hugging Face Transformers . 21
6.5.2 spaCy . 24
6.5.3 Flair . 25
6.5.4 Stanza . 28

6.6 Using Rubrix to explore NLP data with Hugging Face datasets and transformers 30
6.6.1 Introduction . 31
6.6.2 Install tutorial dependencies . 31
6.6.3 Setup Rubrix . 31
6.6.4 1. Storing and exploring text classification training data . 31
6.6.5 2. Storing and exploring token classification training data 36
6.6.6 3. Exploring predictions . 39
6.6.7 Summary . 42
6.6.8 Next steps . 42

6.7 Using Rubrix with spaCy . 42

i

6.7.1 Introduction . 42
6.7.2 Install tutorial dependencies . 42
6.7.3 Setup Rubrix . 43
6.7.4 Our dataset . 43
6.7.5 Logging spaCy NER entities into Rubrix . 43
6.7.6 Exploring and comparing en_core_web_sm and en_core_web_trf models 45
6.7.7 Summary . 46
6.7.8 Next steps . 46

6.8 Node classification with kglab and PyTorch Geometric . 46
6.8.1 Our use case in a nutshell . 47
6.8.2 Install kglab and Pytorch Geometric . 47
6.8.3 1. Loading and exploring the recipes knowledge graph . 47
6.8.4 2. Representing our knowledge graph as a PyTorch Tensor 48
6.8.5 3. Building a training set with Rubrix . 49
6.8.6 4. Creating a Subgraph of recipe and ingredient nodes . 53
6.8.7 5. Semi-supervised node classification with PyTorch Geometric 53
6.8.8 6. Using our model and analyzing its predictions with Rubrix 59
6.8.9 Exercise 1: Training experiments with PyTorch Lightning 60
6.8.10 Exercise 2: Bootstrapping annotation with a zeroshot-classifier 62

6.9 Using Rubrix and Snorkel for human-in-the-loop weak supervision 63
6.9.1 Introduction . 63
6.9.2 Install Snorkel, Textblob and spaCy . 63
6.9.3 1. Spam classification with Snorkel . 64
6.9.4 2. Extending and finding labeling functions with Rubrix 68
6.9.5 3. Checking and curating programatically created data . 73
6.9.6 4. Training and evaluating a classifier . 75
6.9.7 Summary . 77
6.9.8 Next steps . 77

6.10 Python client API . 77
6.10.1 Methods . 77
6.10.2 Models . 79

6.11 Rubrix UI . 81
6.11.1 Home page . 81
6.11.2 Dataset page . 81

6.12 Developer documentation . 87
6.12.1 Development setup . 87
6.12.2 Building the documentation . 87

Python Module Index 89

Index 91

ii

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

Welcome to Rubrix’s documentation.

GETTING STARTED 1

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

2 GETTING STARTED

CHAPTER

ONE

WHAT’S RUBRIX?

Rubrix is a free and open-source tool for tracking and iterating on data for AI projects.

With Rubrix, you can:

• Monitor the predictions of deployed models.

• Collect ground-truth data for starting up a project or evolving an existing one.

• Iterate on ground-truth data and predictions to debug, track and improve your models over time.

• Build custom applications and dashboards on top of your model predictions and ground-truth data.

Rubrix is designed to enable novel, human-in-the loop workflows involving data scientists, subject matter experts and
data engineers for curating, understanding and evolving data for AI and data science projects.

We’ve tried to make Rubrix easy, fun and seamless to use with your favourite libraries while keeping it scalable and
flexible. Rubrix’s main components are:

• a Python library to enable data scientists, data engineers and DevOps roles to build bridges between data,
models and users, which you can install with pip.

• a web application for exploring, curating and labelling data, which you can launch using Docker or with a local
installation.

• a REST API for storing, retrieving and searching human annotations and model predictions, which is part of
Rubrix’s installation.

Rubrix currently supports several natural language processing and knowledge graph use cases but we will be
adding support for speech recognition and computer vision soon.

3

https://rubrix.ml

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

4 Chapter 1. What’s Rubrix?

CHAPTER

TWO

QUICKSTART

Getting started with Rubrix is easy, let’s see a quick example using the transformers and datasets libraries:

Make sure you have Docker installed and run (check the Setup and Installation section for a more detailed installation
process):

mkdir rubrix && cd rubrix

And then run:

wget -O docker-compose.yml https://git.io/rb-docker && docker-compose up

Install Rubrix python library (and transformers, pytorch and datasets libraries for this example):

pip install rubrix transformers datasets torch

Use your favourite editor or a Jupyter notebook to run the following:

from transformers import pipeline
from datasets import load_dataset
import rubrix as rb

model = pipeline('zero-shot-classification', model="typeform/squeezebert-mnli")

dataset = load_dataset("ag_news", split='test[0:100]')

Our labels are: ['World', 'Sports', 'Business', 'Sci/Tech']
labels = dataset.features["label"].names

for record in dataset:
prediction = model(record['text'], labels)

item = rb.TextClassificationRecord(
inputs={"text": record["text"]},
prediction=list(zip(prediction['labels'], prediction['scores'])),
annotation=labels[record["label"]]

)

rb.log(item, name="ag_news_zeroshot")

5

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

6 Chapter 2. Quickstart

CHAPTER

THREE

USE CASES

• Model monitoring and observability: log and observe predictions of live models.

• Ground-truth data collection: collect labels to start a project from scratch or from existing live models.

• Evaluation: easily compute “live” metrics from models in production, and slice evaluation datasets to test your
system under specific conditions.

• Model debugging: log predictions during the development process to visually spot issues.

• Explainability: log things like token attributions to understand your model predictions.

• App development: get a powerful search-based API on top of your model predictions and ground truth data.

7

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

8 Chapter 3. Use cases

CHAPTER

FOUR

DESIGN PRINCIPLES

Rubrix’s design is:

• Agnostic: you can use Rubrix with any library or framework, no need to implement any interface or modify your
existing toolbox and workflows.

• Flexible: Rubrix does not make any strong assumption about your input data, so you can log and structure your
data as it fits your use case.

• Minimalistic: Rubrix is built around a small set of concepts and methods.

9

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

10 Chapter 4. Design Principles

CHAPTER

FIVE

NEXT STEPS

The documentation is divided into different sections, which explore different aspects of Rubrix:

• Setup and installation

• Concepts

• Tutorials
• Guides
• Reference

11

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

12 Chapter 5. Next steps

CHAPTER

SIX

COMMUNITY

You can join the conversation on our Github page and our Github forum.

• Github page

• Github forum

6.1 Setup and installation

In this guide, we will help you to get up and running with Rubrix. Basically, you need to:

1. Install the Python client

2. Launch the web app

6.1.1 1. Install the Rubrix Python client

First, make sure you have Python 3.6 or above installed.

Then you can install Rubrix with pip:

pip install rubrix

6.1.2 2. Setup and launch the webapp

There are two ways to launch the webapp:

1. Using docker-compose (recommended).

2. Executing the server code manually

Using docker-compose (recommended)

For this method you first need to install Docker Compose.

Then, create a folder:

mkdir rubrix && cd rubrix

and launch the docker-contained web app with the following command:

13

https://github.com/recognai/rubrix
https://github.com/recognai/rubrix/discussions
https://docs.docker.com/compose/
https://docs.docker.com/compose/install/

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

wget -O docker-compose.yml https://raw.githubusercontent.com/recognai/rubrix/master/
→˓docker-compose.yaml && docker-compose up

This is the recommended way because it automatically includes an Elasticsearch instance, Rubrix’s main persistent
layer.

Executing the server code manually

When executing the server code manually you need to provide an Elasticsearch instance yourself. This method may be
preferred if you (1) want to avoid or cannot use Docker, (2) have an existing Elasticsearch service, or (3) want to have
full control over your Elasticsearch configuration.

1. First you need to install Elasticsearch (we recommend version 7.10) and launch an Elasticsearch instance. For
MacOS and Windows there are Homebrew formulae and a msi package, respectively.

2. Install the Rubrix Python library together with its server dependencies:

pip install rubrix[server]

3. Launch a local instance of the Rubrix web app

python -m rubrix.server

By default, the Rubrix server will look for your Elasticsearch endpoint at http://localhost:9200. If you want to
customize this, you can set the ELASTICSEARCH environment variable pointing to your endpoint.

Checking your webapp and REST API

Now you should be able to access Rubrix via http://localhost:6900/, and you can also check the API docs at http:
//localhost:6900/api/docs.

6.1.3 3. Testing the installation by logging some data

The following code will log one record into a data set called example-dataset :

import rubrix as rb

rb.log(
rb.TextClassificationRecord(inputs={"text": "my first rubrix example"}),
name='example-dataset'

)

You should receive this response in your terminal or Jupyter Notebook:

BulkResponse(dataset='example-dataset', processed=1, failed=0)

This means that the data has been logged correctly.

If you now go to your Rubrix app at http://localhost:6900/ , you will find your first data set.

Congratulations! You are ready to start working with Rubrix.

14 Chapter 6. Community

https://www.elastic.co/elasticsearch/
https://www.elastic.co/elasticsearch/
https://www.elastic.co/guide/en/elasticsearch/reference/7.10/install-elasticsearch.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.13/brew.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/windows.html
http://localhost:6900/
http://localhost:6900/api/docs
http://localhost:6900/api/docs
http://localhost:6900/

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

6.1.4 Next steps

To continue learning we recommend you to:

• Check our guides and tutorials.
• Read about Rubrix’s main concepts.

6.2 Concepts

In this section, we introduce the core concepts of Rubrix. These concepts are important for understanding how to
interact with the tool and its core Python client.

We have two main sections: Rubrix data model and Python client API methods.

6.2.1 Rubrix Data model

The Python library and the UI are built around a few simple but key concepts. This section aims to clarify what those
concepts and show you the main constructs for using Rubrix with your own models and data. Let’s take a look at
Rubrix’s components and methods:

Dataset

A dataset is a collection of records stored in Rubrix. The main things you can do with a Dataset are to log records and
to load the records of a Dataset into a Pandas.Dataframe from a Python app, script, or a Jupyter/Colab notebook.

Snapshot

A snapshot is a version of a Dataset containing annotations at a given time. Snapshots can be created through the
Rubrix UI so they can be loaded and used using the Python library.

Record

A record is a data item composed of inputs and, optionally, predictions and annotations. Usually, inputs are
the information your model receives (for example: ‘Macbeth’).

Think of predictions as the classification that your system made over that input (for example: ‘Virginia Woolf’), and
think of annotations as the ground truth that you manually assign to that input (because you know that, in this case, it
would be ‘William Shakespeare’). Records are defined by the type of Taskthey are related to. Let’s see three different
examples:

6.2. Concepts 15

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

Text classification record

Text classification deals with predicting in which categories a text fits. As if you’re shown an image you could quickly
tell if there’s a dog or a cat in it, we build NLP models to distinguish between a Jane Austen’s novel or a Charlotte
Bronte’s poem. It’s all about feeding models with labeled examples and see how it start predicting over the very same
labels.

Let’s see examples over a spam classifier.

record = rb.TextClassificationRecord(
inputs={

"text": "Access this link to get free discounts!"
},
prediction = [('SPAM', 0.8), ('HAM', 0.2)]
prediction_agent = "link or reference to agent",

annotation = "SPAM",
annotation_agent= "link or reference to annotator",

metadata={ # Information about this record
"split": "train"

},

)

Multi-label text classification record

Another similar task to Text Classification, but yet a bit different, is Multi-label Text Classification. Just one key
difference: more than one label may be predicted. While in a regular Text Classification task we may decide that
the tweet “I can’t wait to travel to Egypts and visit the pyramids” fits into the hastag #Travel, which is accurate, in
Multi-label Text Classification we can classify it as more than one hastag, like #Travel #History #Africa #Sightseeing
#Desert.

record = rb.TextClassificationRecord(
inputs={

"text": "I can't wait to travel to Egypts and visit the pyramids"
},
multi_label = True,

prediction = [('travel', 0.8), ('history', 0.6), ('economy', 0.3), ('sports', 0.2)],
prediction_agent = "link or reference to agent",

When annotated, scores are suppoused to be 1
annotation = ['travel', 'history'], # list of all annotated labels,
annotation_agent= "link or reference to annotator",

metadata={ # Information about this record
"split": "train"

},

)

16 Chapter 6. Community

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

Token classification record

Token classification kind-of-tasks are NLP tasks aimed to divide the input text into words, or syllabes, and assign
certain values to them. Think about giving each word in a sentence its gramatical category, or highlight which parts of
a medical report belong to a certain speciality. There are some popular ones like NER or POS-tagging.

record = rb.TokenClassificationRecord(
text = "Michael is a professor at Harvard",
tokens = token_list,

Predictions are a list of tuples with all your token labels and its starting and␣
→˓ending positions

prediction = [('NAME', 0, 7), ('LOC', 26, 33)],
prediction_agent = "link or reference to agent",

Annotations are a list of tuples with all your token labels and its starting and␣
→˓ending positions

annotation = [('NAME', 0, 7), ('ORG', 26, 33)],
annotation_agent = "link or reference to annotator",

metadata={ # Information about this record
"split": "train"
},

)

Task

A task defines the objective and shape of the predictions and annotations inside a record. You can see our supported
tasks at Tasks

Annotation

An annotation is a piece information assigned to a record, a label, token-level tags, or a set of labels, and typically by
a human agent.

Prediction

A prediction is a piece information assigned to a record, a label or a set of labels and typically by a machine process.

Metadata

Metada will hold extra information that you want your record to have: if it belongs to the training or the test dataset, a
quick fact about something regarding that specific record. . . Feel free to use it as you need!

6.2. Concepts 17

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

6.2.2 Methods

To find more information about these methods, please check out the Python client API .

rb.init

Setup the python client: rubrix.init()

rb.log

Register a set of logs into Rubrix: rubrix.log()

rb.load

Load a dataset or a snapshot as a pandas DataFrame: rubrix.load()

rb.snapshots

Retrieve a list of dataset snapshots: rubrix.snapshots()

rb.delete

Delete a dataset with a given name: rubrix.delete()

6.3 Tasks

This section gives you ideas about the kind of tasks you can use Rubrix for. It also describes some of the tasks on our
roadmap, if there’s some task you want and don’t see here or you want to contribute a task, file an issue or use the
Discussion forum at Rubrix’s GitHub page.

6.3.1 Supported tasks

Text classification

According to the amazing NLP Progress resource by Seb Ruder:

Text classification is the task of assigning a sentence or document an appropriate category. The categories
depend on the chosen dataset and can range from topics.

Rubrix is flexible with input and output shapes, which means you can model many related tasks like for example:

Key phrase extraction

• Sentiment analysis

• Natural Language Inference

• Relationship Extraction

• Stance detection

• Multi-label text classification

18 Chapter 6. Community

https://github.com/recognai/rubrix/
http://nlpprogress.com/english/text_classification.html
https://paperswithcode.com/task/keyword-extraction
http://nlpprogress.com/english/sentiment_analysis.html
http://nlpprogress.com/english/natural_language_inference.html
http://nlpprogress.com/english/relationship_extraction.html
http://nlpprogress.com/english/stance_detection.html

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

• Node classification in knowledge graphs.

Token classification

The most well-known task in this category is probably Named Entity Recognition:

Named entity recognition (NER) is the task of tagging entities in text with their corresponding type. Ap-
proaches typically use BIO notation, which differentiates the beginning (B) and the inside (I) of entities.
O is used for non-entity tokens.

Rubrix is flexible with input and output shapes, which means you can model related tasks like for example:

• Named entity recognition

• Part of speech tagging

• Key phrase extraction

• Slot filling

6.3.2 Tasks on the roadmap

Natural language processing

• Text2Text, covering summarization, machine translation, natural language generation, etc.

• Question answering

Computer vision

• Image classification

• Image captioning

Speech

• Speech2Text

6.4 Monitoring and collecting data from third-party apps

This guide will show you how can Rubrix be integrated into third-party applications to collect predictions and user
feedback. To do this, we are going to use streamlit, an amazing tool to turn Python scripts into beautiful web-apps.

Let’s make a quick tour of the app, how you can run it locally and how to integrate Rubrix into other apps.

6.4. Monitoring and collecting data from third-party apps 19

http://nlpprogress.com/english/named_entity_recognition.html
https://paperswithcode.com/task/keyword-extraction
https://streamlit.io

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

6.4.1 What does our streamlit app do?

In our streamlit app we are working on a use case of multilabel text classification, including the inference process
to make predictions and the annotations over those predictions. The NLP model is a zero-shot classifier based on
SqueezeBERT, used to predict text categories. These predictions are mutilabel, which means that more than one
category can be predicted for a given text, thus the sum of the probabilities of all the candidate labels can be greater
than 1. For this reasons, we let the user pick a threshold, showing which labels will be included in the prediction when
changing its value.

After the threshold is selected, the user can make its own annotation, whether or not she or he thinks the predictions
are correct. This is where the human-in-the-middle comes into play, by responding to a model made prediction with a
user made annotation, that could eventually be used to provide feedback to the model or to make retrainings.

Once the annotated labels are selected, the user can press the log button. A TextClassificationRecord will be
created and logged into Rubrix with all the information about the process: the input text, the prediction and the anno-
tation. This data is also displayed in the streamlit app, as the process ends. But you could always change the input text,
the threshold or the annotated labels and log again!

6.4.2 How to run the app

We’ve created a standalone repository for this streamlit app, for you to clone and play around. To run the app, follow
these steps:

1. Install the requirements into a fresh environment (or into your system, but take care with the dependency prob-
lems!) with Python 3, via pip install -r requirements.txt.

2. Run streamlit run app.py.

3. In the response prompt, streamlit will give you the localhost direction where your app will be running. You can
now open it in your browser.

6.4.3 Rubrix integration

Rubrix can be used alongside any third-party apps via its REST API or its Python client. In our case, the logging of
the record is made when the log button is pressed. In that moment, two lists will be populated:

• labels, with the predicted labels by the zero-shot classifier

• selected_labels, with the annotated labels, selected by the user.

Then, using the Python client we log instances of rubrix.TextClassificationRecord as follows:

import rubrix as rb

item = rb.TextClassificationRecord(
inputs={"text": text_input},
prediction=labels,
prediction_agent="typeform/squeezebert-mnli",
annotation=selected_labels,
annotation_agent="streamlit-user",
multi_label=True,
event_timestamp=datetime.datetime.now(),
metadata={"model": "typeform/squeezebert-mnli"}

)

dataset_name = "multilabel_text_classification"
(continues on next page)

20 Chapter 6. Community

https://huggingface.co/typeform/squeezebert-mnli
https://github.com/recognai/rubrix-streamlit-example

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

(continued from previous page)

rb.log(name=dataset_name, records=item)

6.5 Rubrix Cookbook

This guide is a collection of recipes. It shows examples for using Rubrix with some of the most popular NLP Python
libraries.

Rubrix is agnostic, it can be used with any library or framework, no need to implement any interface or modify your
existing toolbox and workflows.

With these examples you’ll be able to start exploring and annnotating data with these libraries or get some inspiration
if your library of choice is not in this guide.

If you miss a library in this guide, leave a message at the Rubrix Github forum.

6.5.1 Hugging Face Transformers

Hugging Face has made working with NLP easier than ever before. With a few lines of code we can take a pretrained
Transformer model from the Hub, start making some predictions and log them into Rubrix.

[]: %pip install torch
%pip install transformers
%pip install datasets

Text Classification

Inference

Let’s try a zero-shot classifier using SqueezeBERT for predicting the topic of a sentence.

[]: import rubrix as rb
from transformers import pipeline

input_text = "I love watching rock climbing competitions!"

We define our HuggingFace Pipeline
classifier = pipeline(

"zero-shot-classification",
model="typeform/squeezebert-mnli",
framework="pt",

)

Making the prediction
prediction = classifier(

input_text,
candidate_labels=[

"politics",
"sports",

(continues on next page)

6.5. Rubrix Cookbook 21

https://github.com/recognai/rubrix/discussions
https://huggingface.co
https://huggingface.co/models

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

(continued from previous page)

"technology",
],
hypothesis_template="This text is about {}.",

)

Creating the prediction entity as a list of tuples (label, probability)
prediction = list(zip(prediction["labels"], prediction["scores"]))

Building a TextClassificationRecord
record = rb.TextClassificationRecord(

inputs=input_text,
prediction=prediction,
prediction_agent="https://huggingface.co/typeform/squeezebert-mnli",

)

Logging into Rubrix
rb.log(records=record, name="zeroshot-topic-classifier")

Training

Let’s read a Rubrix dataset, prepare a training set and use the Trainer API for fine-tuning a
distilbert-base-uncased model. Take into account that a labelled_dataset is expected to be found in
your Rubrix client.

[]: from datasets import Dataset
import rubrix as rb

load rubrix dataset
df = rb.load('labelled_dataset')

inputs can be dicts to support multifield classifiers, we just use the text here.
df['text'] = df.inputs.transform(lambda r: r['text'])

we flatten the annotations and create a dict for turning labels into numeric ids
df['labels'] = df.annotation.transform(lambda r: r[0])
label2id = {label:id for id,label in enumerate(set(df.labels.values))}

create dataset from pandas with labels as numeric ids
dataset = Dataset.from_pandas(df[['text', 'labels']])
dataset = dataset.map(lambda example: {'labels': label2id[example['labels']]})

[]: from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
from transformers import Trainer

from here, it's just regular fine-tuning with transformers
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased",␣
→˓num_labels=4)

(continues on next page)

22 Chapter 6. Community

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

(continued from previous page)

def tokenize_function(examples):
return tokenizer(examples["text"], padding="max_length", truncation=True)

train_dataset = dataset.map(tokenize_function, batched=True).shuffle(seed=42)

trainer = Trainer(model=model, train_dataset=train_dataset)

trainer.train()

Token Classification

We will explore a DistilBERT NER classifier fine-tuned for NER using the conll03 English dataset.

[]: import rubrix as rb
from transformers import pipeline

input_text = "My name is Sarah and I live in London"

We define our HuggingFace Pipeline
classifier = pipeline(

"ner",
model="elastic/distilbert-base-cased-finetuned-conll03-english",
framework="pt",

)

Making the prediction
predictions = classifier(

input_text,
)

Creating the prediction entity as a list of tuples (entity, start_char, end_char)
prediction = [(pred["entity"], pred["start"], pred["end"]) for pred in predictions]

Building a TokenClassificationRecord
record = rb.TokenClassificationRecord(

text=input_text,
tokens=input_text.split(),
prediction=prediction,
prediction_agent="https://huggingface.co/elastic/distilbert-base-cased-finetuned-

→˓conll03-english",
)

Logging into Rubrix
rb.log(records=record, name="zeroshot-ner")

6.5. Rubrix Cookbook 23

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

6.5.2 spaCy

spaCy offers industrial-strength Natural Language Processing, with support for 64+ languages, trained pipelines, multi-
task learning with pretrained Transformers, pretrained word vectors and much more.

[]: %pip install spacy

Token Classification

We will focus our spaCy recipes into Token Classification tasks, showing you how to log data from NER and POS
tagging.

NER

For this recipe, we are going to try the French language model to extract NER entities from some sentences.

[]: !python -m spacy download fr_core_news_sm

[]: import rubrix as rb
import spacy

input_text = "Paris a un enfant et la for^et a un oiseau ; l’oiseau s’appelle le moineau␣
→˓; l’enfant s’appelle le gamin"

Loading spaCy model
nlp = spacy.load("fr_core_news_sm")

Creating spaCy doc
doc = nlp(input_text)

Creating the prediction entity as a list of tuples (entity, start_char, end_char)
prediction = [(ent.label_, ent.start_char, ent.end_char) for ent in doc.ents]

Building TokenClassificationRecord
record = rb.TokenClassificationRecord(

text=input_text,
tokens=[token.text for token in doc],
prediction=prediction,
prediction_agent="spacy.fr_core_news_sm",

)

Logging into Rubrix
rb.log(records=record, name="lesmiserables-ner")

24 Chapter 6. Community

https://spacy.io

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

POS tagging

Changing very few parameters, we can make a POS tagging experiment, instead of NER. Let’s try it out with the same
input sentence.

[]: import rubrix as rb
import spacy

input_text = "Paris a un enfant et la for^et a un oiseau ; l’oiseau s’appelle le moineau␣
→˓; l’enfant s’appelle le gamin"

Loading spaCy model
nlp = spacy.load("fr_core_news_sm")

Creating spaCy doc
doc = nlp(input_text)

Creating the prediction entity as a list of tuples (tag, start_char, end_char)
prediction = [(token.pos_, token.idx, token.idx + len(token)) for token in doc]

Building TokenClassificationRecord
record = rb.TokenClassificationRecord(

text=input_text,
tokens=[token.text for token in doc],
prediction=prediction,
prediction_agent="spacy.fr_core_news_sm",

)

Logging into Rubrix
rb.log(records=record, name="lesmiserables-pos")

6.5.3 Flair

It’s a framework that provides a state-of-the-art NLP library, a text embedding library and a PyTorch framework for
NLP. Flair offers sequence tagging language models in English, Spanish, Dutch, German and many more, and they are
also hosted on HuggingFace Model Hub.

[]: %pip install flair

Text Classification

Flair offers some zero-shot models ready to be used, which we are going to use to introduce logging
TextClassificationRecords with Rubrix. Let’s see how to integrate Rubrix in their Deutch offensive language
model (we promise to not get very explicit).

[]: import rubrix as rb
from flair.models import TextClassifier
from flair.data import Sentence

input_text = "Du erzählst immer Quatsch." # something like: "You are always narrating␣
→˓silliness."

(continues on next page)

6.5. Rubrix Cookbook 25

https://github.com/flairNLP/flair
https://huggingface.co/models

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

(continued from previous page)

Load our pre-trained TARS model for English
classifier = TextClassifier.load("de-offensive-language")

Creating Sentence object
sentence = Sentence(input_text)

Make the prediction
classifier.predict(sentence, multi_class_prob=True)

Creating the prediction entity as a list of tuples (label, probability)
prediction = [(pred.value, pred.score) for pred in sentence.labels]

Building a TextClassificationRecord
record = rb.TextClassificationRecord(

inputs=input_text,
prediction=prediction,
prediction_agent="de-offensive-language",

)

Logging into Rubrix
rb.log(records=record, name="german-offensive-language")

Token Classification

Flair offers a lot of tools for Token Classification, supporting tasks like named entity recognition (NER), part-of-speech
tagging (POS), special support for biomedical data, etc. with a growing number of supported languages.

Let’s see some examples for NER and POS tagging.

NER

In this example, we will try the pretrained Dutch NER model from Flair.

[]: import rubrix as rb
from flair.data import Sentence
from flair.models import SequenceTagger

input_text = "De Nachtwacht is in het Rijksmuseum"

Loading our NER model from flair
tagger = SequenceTagger.load("flair/ner-dutch")

Creating Sentence object
sentence = Sentence(input_text)

run NER over sentence
tagger.predict(sentence)

Creating the prediction entity as a list of tuples (entity, start_char, end_char)
(continues on next page)

26 Chapter 6. Community

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

(continued from previous page)

prediction = [
(entity.get_labels()[0].value, entity.start_pos, entity.end_pos)
for entity in sentence.get_spans("ner")

]

Building a TokenClassificationRecord
record = rb.TokenClassificationRecord(

text=input_text,
tokens=[token.text for token in sentence],
prediction=prediction,
prediction_agent="flair/ner-dutch",

)

Logging into Rubrix
rb.log(records=record, name="dutch-flair-ner")

POS tagging

In the following snippet we will use de multilingual POS tagging model from Flair.

[]: import rubrix as rb
from flair.data import Sentence
from flair.models import SequenceTagger

input_text = "George Washington went to Washington. Dort kaufte er einen Hut."

Loading our POS tagging model from flair
tagger = SequenceTagger.load("flair/upos-multi")

Creating Sentence object
sentence = Sentence(input_text)

run NER over sentence
tagger.predict(sentence)

Creating the prediction entity as a list of tuples (entity, start_char, end_char)
prediction = [

(entity.get_labels()[0].value, entity.start_pos, entity.end_pos)
for entity in sentence.get_spans()

]

Building a TokenClassificationRecord
record = rb.TokenClassificationRecord(

text=input_text,
tokens=[token.text for token in sentence],
prediction=prediction,
prediction_agent="flair/upos-multi",

)

Logging into Rubrix
rb.log(records=record, name="flair-pos-tagging")

6.5. Rubrix Cookbook 27

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

6.5.4 Stanza

Stanza is a collection of efficient tools for many NLP tasks and processes, all in one library. It’s maintained by the
Standford NLP Group. We are going to take a look at a few interactions that can be done with Rubrix.

[]: %pip install stanza

Text Classification

Let’s start by using a Sentiment Analysis model to log some TextClassificationRecords.

[]: import rubrix as rb
import stanza

input_text = (
"There are so many NLP libraries available, I don't know which one to choose!"

)

Downloading our model, in case we don't have it cached
stanza.download("en")

Creating the pipeline
nlp = stanza.Pipeline(lang="en", processors="tokenize,sentiment")

Analizing the input text
doc = nlp(input_text)

This model returns 0 for negative, 1 for neutral and 2 for positive outcome.
We are going to log them into Rubrix using a dictionary to translate numbers to labels.
num_to_labels = {0: "negative", 1: "neutral", 2: "positive"}

Build a prediction entities list
Stanza, at the moment, only output the most likely label without probability.
So we will suppouse Stanza predicts the most likely label with 1.0 probability, and␣
→˓the rest with 0.
entities = []

for _, sentence in enumerate(doc.sentences):
for key in num_to_labels:

if key == sentence.sentiment:
entities.append((num_to_labels[key], 1))

else:
entities.append((num_to_labels[key], 0))

Building a TextClassificationRecord
record = rb.TextClassificationRecord(

inputs=input_text,
prediction=entities,
prediction_agent="stanza/en",

)

(continues on next page)

28 Chapter 6. Community

https://stanfordnlp.github.io/stanza/
https://nlp.stanford.edy

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

(continued from previous page)

Logging into Rubrix
rb.log(records=record, name="stanza-sentiment")

Token Classification

Stanza offers so many different pretrained language models for Token Classification Tasks, and the list does not stop
growing.

POS tagging

We can use one of the many UD models, used for POS tags, morphological features and syntantic relations. UD stands
for Universal Dependencies, the framework where these models has been trained. For this example, let’s try to extract
POS tags of some Catalan lyrics.

[]: import rubrix as rb
import stanza

Loading a cool Obrint Pas lyric
input_text = "Viure mantenint viva la flama a través del temps. La flama de tot un poble␣
→˓en moviment"

Downloading our model, in case we don't have it cached
stanza.download("ca")

Creating the pipeline
nlp = stanza.Pipeline(lang="ca", processors="tokenize,mwt,pos")

Analizing the input text
doc = nlp(input_text)

Creating the prediction entity as a list of tuples (tag, start_char, end_char)
prediction = [

(word.pos, token.start_char, token.end_char)
for sent in doc.sentences
for token in sent.tokens
for word in token.words

]

Building a TokenClassificationRecord
record = rb.TokenClassificationRecord(

text=input_text,
tokens=[word.text for sent in doc.sentences for word in sent.words],
prediction=prediction,
prediction_agent="stanza/catalan",

)

Logging into Rubrix
rb.log(records=record, name="stanza-catalan-pos")

6.5. Rubrix Cookbook 29

https://universaldependencies.org

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

NER

Stanza also offers a list of available pretrained models for NER tasks. So, let’s try Russian

[]: import rubrix as rb
import stanza

input_text = (
"-- - " # War and Peace is one my favourite books

)

Downloading our model, in case we don't have it cached
stanza.download("ru")

Creating the pipeline
nlp = stanza.Pipeline(lang="ru", processors="tokenize,ner")

Analizing the input text
doc = nlp(input_text)

Creating the prediction entity as a list of tuples (entity, start_char, end_char)
prediction = [

(token.ner, token.start_char, token.end_char)
for sent in doc.sentences
for token in sent.tokens

]

Building a TokenClassificationRecord
record = rb.TokenClassificationRecord(

text=input_text,
tokens=[word.text for sent in doc.sentences for word in sent.words],
prediction=prediction,
prediction_agent="flair/russian",

)

Logging into Rubrix
rb.log(records=record, name="stanza-russian-ner")

6.6 Using Rubrix to explore NLP data with Hugging Face datasets
and transformers

In this tutorial, we will walk through the process of using Rubrix to explore NLP datasets in combination with the
amazing datasets and transformer libraries from Hugging Face.

30 Chapter 6. Community

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

6.6.1 Introduction

Our goal is to show you how to store and explore NLP datasets using Rubrix for use cases like training data
management or model evaluation and debugging.

The tutorial is organized into three parts:

1. Storing and exploring text classification data: We will use the datasets library and Rubrix to store text
classification datasets.

2. Storing and exploring token classification data: We will use the datasets library and Rubrix to store token
classification data.

3. Exploring predictions: We will use a pretrained transformers model and store its predictions into Rubrix to
explore and evaluate our pretrained model.

6.6.2 Install tutorial dependencies

In this tutorial we will be using transformers and datasets libraries. If you do not have them installed, run:

[]: %pip install torch -qqq
%pip install transformers -qqq
%pip install datasets -qqq
%pip install tdqm -qqq # for progress bars

6.6.3 Setup Rubrix

If you have not installed and launched Rubrix, check the Setup and Installation guide.

[]: import rubrix as rb

6.6.4 1. Storing and exploring text classification training data

Rubrix allows you to track data for different NLP tasks (such as Token Classification or Text Classification).

With Rubrix you can track both training data and predictions from models. In this part, we will focus only on training
data. Typically, training data is data which has been curated or annotated by a human. Other terms for this same concept
are: ground-truth data, “gold-standard” data, or even “annotated” data.

In this part of the tutorial, you will learn how to use datasets library for quick exploration of Text Classification
and Token Classification training data. This is useful during model development, for getting a sense of the data,
identifying potential issues, debugging, etc. Here we will use rather static “research”datasets but Rubrix really shines
when you are collecting and using training data in the wild, or in other words in real data science projects.

Let’s get started!

6.6. Using Rubrix to explore NLP data with Hugging Face datasets and transformers 31

https://docs.rubrix.ml/en/latest/getting_started/setup%26installation.html

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

Text classification with the tweet_eval dataset (Emoji classification)

Text classification deals with predicting in which categories a text fits. As if you’re shown an image you could quickly
tell if there’s a dog or a cat in it, we build NLP models to distinguish between a Jane Austen’s novel or a Charlotte
Bronte’s poem. It’s all about feeding models with labeled examples and see how it start predicting over the very same
labels.

In this first case, we are going to play with tweet_eval, a dataset with a bunch of tweets from different authors and
topics and the sentiment it transmits. This is, in fact, a very common NLP task called Sentiment Analysis, but with
a cool tweak: we are representing these sentiments with emojis. Each tweet comes with a number between 0 and 19,
which represents different emojis. You can see each one in a cell below or in the tweet_eval site at Hub.

First of all, we are going to load the dataset from Hub and visualize its content.

[]: from datasets import load_dataset

dataset = load_dataset("tweet_eval", 'emoji', script_version="master")

[]: labels = dataset['train'].features['label'].names; labels

Usually, datasets are divided into train, validation and test splits, and each one of them is used in a certain part of the
training. For now, we can stick to the training split, which usually contains the majority of the instances of a dataset.
Let’s see what’s inside!

[]: with dataset['train'].formatted_as("pandas"):
print(dataset['train'][:5])

Now, we are going to create our records from this dataset and log them into rubrix. Rubrix comes with
TextClassificationRecord and TokenClassificationRecord classes, which can be created from a dictionary.
These objects passes information to rubrix about the input of the model, the predictions obtained and the annotations
made, as well as a metadata field for other important details.

In our case, we haven’t predicted anything, so we are only going to include the labels of each instance as annotations,
as we know they are the ground truth. We will also include each tweet into inputs, and specify in the metadata section
that we are into the training split. Once records is populated, we can log it with rubric.log(), specifying the name
of our dataset.

[]: records = []

for record in dataset['train']:
records.append(rb.TextClassificationRecord(

inputs=record["text"],
annotation=labels[record["label"]],
annotation_agent="https://huggingface.co/datasets/tweet_eval",
metadata={"split": "train"},
)

)

[]: rb.log(records=records, name="tweet_eval_emojis")

32 Chapter 6. Community

https://huggingface.co/datasets/tweet_eval

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

Thanks to our metadata section in the Text Classification Record, we can log tweets from the validation and test splits
in the same dataset to explore them using the Metadata filters.

[]: records_validation = []

for record in dataset['validation']:
records_validation.append(rb.TextClassificationRecord(

inputs=record["text"],
annotation=labels[record["label"]],
annotation_agent="https://huggingface.co/datasets/tweet_eval",
metadata={"split": "validation"},
)

)

rb.log(records=records_validation, name="tweet_eval_emojis")

[]: records_test = []

for record in dataset['test']:
records_test.append(rb.TextClassificationRecord(

inputs=record["text"],
annotation=labels[record["label"]],
annotation_agent="https://huggingface.co/datasets/tweet_eval",
metadata={"split": "test"},
)

)

rb.log(records=records_test, name="tweet_eval_emojis")

6.6. Using Rubrix to explore NLP data with Hugging Face datasets and transformers 33

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

Natural language inference with the MRPC dataset

Natural Language Inference (NLI) is also a very common NLP task, but a little bit different to regular Text Classification.
In NLI, the model receives a premise and a hypothesis, and it must figure out if the premise hypothesis is true or not given
the premise. We have three categories: entailment (true), contradiction (false) or neutral (undetermined or unrelated).
With the premise “We live in a flat planet called Earth”, the hypothesis “The Earth is flat” must be classified as
entailment, as it is stated in the premise. NLI works with a sort of close-world assumption, in that everything not
defined in the premise cannot be suppoused from the real world.

Another key difference from Text Classification is that the input come in pairs of two sentences or texts, not only one.
Text Classification treats its input as a cohesive and correlated unit, while NLI treats its input as a pair and tries to find
correlation.

To play around with NLI we are going to use Hub GLUE benchmark over the MRPC task. GLUE is a well-known
benchmark resource for NLP, and allow us to use its data directly over the Microsoft Research Paraphrase Corpus, a
corpus of online news.

[]: from datasets import load_dataset
dataset = load_dataset('glue', 'mrpc', split='train')

[]: dataset[0]

We can see the two input sentences instead of one. In order to simplify the workflow, let’s just test if they are equivalent
or not.

[]: labels = dataset.features['label'].names ; labels

Populating our record list follows the same procedure as in Text Classification, adapting our input to the new scenario
of pairs.

[]: records=[]

(continues on next page)

34 Chapter 6. Community

https://huggingface.co/datasets/glue

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

(continued from previous page)

for record in dataset:
records.append(rb.TextClassificationRecord(

inputs={
"sentence1": record["sentence1"],
"sentence2": record["sentence2"]

},
annotation=labels[record["label"]],
annotation_agent="https://huggingface.co/datasets/glue#mrpc",
metadata={"split": "train"},
)

)

[]: rb.log(records=records, name="mrpc")

Once your dataset is logged you can explore it using filters, keyword-based search and with Elasticsearch’s query string
DSL.

For example, the folllowing query inputs.sentence2:(not or dont) lets you browse all examples containing not
or dont inside the sentence2 field, which you can further filter by Annotated as to browse examples belonging to a
specific category (e.g., not_equivalent)

Multilabel text classification with go_emotions dataset

Another similar task to Text Classification, but yet a bit different, is Multilabel Text Classification. Just one key differ-
ence: more than one label may be predicted. While in a regular Text Classification task we may decide that the tweet
“I can’t wait to travel to Egypts and visit the pyramids” fits into the hastag #Travel, which is accurate, in Multilabel
Text Classification we can classify it as more than one hastag, like #Travel #History #Africa #Sightseeing #Desert.
In Text Classification, the category with the highest score (which our model predicted) is going to be the category
predicted, but in this task we need to establish a threshold, a value between 0 and 1, from which we will classify the
labels as predictions or not. If we set it to 0.5, only categories with more than a 0.5 probability value will be considered
predictions.

6.6. Using Rubrix to explore NLP data with Hugging Face datasets and transformers 35

https://docs.rubrix.ml/en/latest/reference/rubrix_webapp_reference.html#search-input
https://docs.rubrix.ml/en/latest/reference/rubrix_webapp_reference.html#search-input

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

To get used to this task and see how we can log data to Rubrix, we are going to use Hub go_emotions dataset, with com-
ments from different reddit forums and an associated sentiment (this experiment would also be considered Sentiment
Analysis).

[]: from datasets import load_dataset

dataset = load_dataset('go_emotions', split='train[0:10]')

Here’s an example of an instance of the datasets, and the different labels, ordered. Each label will be represented in the
dataset as a number, but we will translate to its name before logging to rubrix, to see things more clearly.

[]: dataset[0]

[]: labels = dataset.features['labels'].feature.names; labels

Now, we need to add a confidence value to our annotation, from 0 to 1. As these are all ground truths, we consider they
have the maximum probability.

[]: records= []

for record in dataset:
records.append(rb.TextClassificationRecord(

inputs={"text": record["text"]},
annotation=[labels[cls] for cls in record['labels']],
annotation_agent="https://huggingface.co/datasets/go_emotions",
multi_label=True,
metadata={

"split": "train"
},

)
)

And logging is just as easy as before!

[]: rb.log(records=records, name="go_emotions")

6.6.5 2. Storing and exploring token classification training data

In this second part, we will cover Token Classification while still using datasets library. These kind of NLP tasks aim
to divide the input text into words, or syllabes, and assign certain values to them. Think about giving each word in a
sentence its gramatical category, or highlight which parts of a medical report belong to a certain speciality.

We are going to cover a few cases using datasets, and see how TokenClassificationRecord allows us to log data
in rubrix in a similar fashion.

36 Chapter 6. Community

https://huggingface.co/datasets/go_emotions

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

Named-Entity Recognition with wnut17 dataset

Named-Entity Recognition (NER) seeks to locate and classify named entities metioned in unstructured text into pre-
defined categories. And, what’s powerful about NER is that this predefined categories can be whatever we want. Maybe
gramatical categories, and be the best at syntax analysis in our English class, maybe person names, or organizations,
or even medical codes.

For this case, we are going to use Hub WNUT 17 dataset, about rare entities on written text. Take for example the
tweet “so.. kktny in 30 mins?” - even human experts find entity kktny hard to detect and resolve. This task will evaluate
the ability to detect and classify novel, emerging, singleton named entities in written text.

As always, let’s first dive into the data and see how it looks like.

[]: from datasets import load_dataset

dataset = load_dataset("wnut_17", split="train[0:10]")

[]: dataset[0]

We can see a list of tags and the tokens they are refering to. We have the following rare entities in this example.

[]: for entity, token in zip(dataset[0]["ner_tags"], dataset[0]["tokens"]):
if entity != 0:

print(f"""{token}: {dataset.features["ner_tags"].feature.names[entity]}""")

So, it make a lot of sense to translate these tags into NER tags, which are much more self-explanatory than an integer.

[]: dataset = dataset.map(lambda instance: {"ner_tags_translated": [dataset.features["ner_
→˓tags"].feature.names[tag] for tag in instance["ner_tags"]]})

What we did is a mapping function over dataset, which allow us to make changes in every instance of the dataset. The
very same instance that we printed before is much more readable now.

[]: dataset[0]

Info about the meaning of the tags is available here, but to sum up, Empire and ESB has been classified as B-LOC,
or beggining of a location name, State and Building has been classified as I-LOC or intermediate/final of a location
name.

We need to transform a bit this information, providing an entity annotation. Entity annotations are simply tuples, with
the following structure

(label, start_position, end_position)

Let’s create a function that transform our dataset records into entities. It’s a bit weird, but don’t worry! What’s doing
inside is getting the entities information as shown above.

[]: def parse_entities(record):

entities, text, nr_tokens = [], " ".join(record["tokens"]), len(record["tokens"])
token_start_indexes = [text.rfind(substr) for substr in [" ".join(record["tokens"][i:

→˓]) for i in range(nr_tokens)]]

entity = None
for i, tag, start in zip(range(nr_tokens), record["ner_tags_translated"], token_

→˓start_indexes):
(continues on next page)

6.6. Using Rubrix to explore NLP data with Hugging Face datasets and transformers 37

https://huggingface.co/datasets/wnut_17
https://huggingface.co/datasets/viewer/?dataset=wnut_17

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

(continued from previous page)

end of entity
if entity is not None and (not tag.startswith("I-") or i == nr_tokens -1):

entity += (start-1,)
entities.append(entity)
entity = None

start new entity
if entity is None and tag.startswith("B-"):

entity = (tag[2:], start)

return entities

Let’s proceed and create a record list to log it

[]: records = []

for record in dataset:
entities = parse_entities(record)
records.append(rb.TokenClassificationRecord(

text=" ".join(record["tokens"]),
tokens=record["tokens"],
annotation=entities,
annotation_agent="https://huggingface.co/datasets/wnut_17",
metadata={

"split": "train"
},

)
)

[]: records[0]

[]: rb.log(records=records, name="ner_wnut_17")

Part of speech tagging with conll2003 dataset

Another NLP task related to token-level classification is Part-of-Speech tagging (POS tagging). In it we will identify
names, verbs, adverbs, adjectives. . . based on the context and the meaning of the words. It is a little bit trickier than
having a huge dictionary where we can look up that drink is a verb and dog is a name. Many words change its gramatical
type according to the context of the sentence, and here is where AI comes to save the day.

With just our dictionary and a regular script, dog in The sailor dogs the hatch. would be classified as a name,
because dog is a name, right? A trained NLP model would step up and say No! That’s is a very common example to
ilustrate the ambiguity of words. It is a verb!. Or maybe it would just say verb. That’s up to you.

In this dataset from hub, we will see how differente sentence has POS and NER tags, and how we can log this POS tag
information into Rubrix.

[]: from datasets import load_dataset

dataset = load_dataset("conll2003", split="train[0:10]")

[]: dataset[0]

38 Chapter 6. Community

https://huggingface.co/datasets/conll2003

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

Each POS and NER tag are represented by a number. In dataset.features we can see to which tag they refer (this
link may serve you to look up the meaning).

[]: dataset.features

The following function will help us create the entities.

[]: def parse_entities_POS(record):

entities = []
counter = 0

for i in range(len(record['pos_tags'])):

entity = (dataset.features["pos_tags"].feature.names[record["pos_tags"][i]],␣
→˓counter, counter + len(record["tokens"][i]))

entities.append(entity)

counter += len(record["tokens"][i]) + 1

return entities

[]: records = []

for record in dataset:
entities = parse_entities_POS(record)
records.append(rb.TokenClassificationRecord(

text=" ".join(record["tokens"]),
tokens=record["tokens"],
annotation=entities,
annotation_agent="https://huggingface.co/datasets/conll2003",
metadata={

"split": "train"
},

)
)

[]: rb.log(records=records, name="conll2003")

And so it is done! We have logged data from 5 different type of experiments, which now can be visualized in Rubrix
UI

6.6.6 3. Exploring predictions

In this third part of the tutorial we are going to focus on loading predictions and annotations into Rubrix and visualize
them from the UI.

Rubrix let us play with the data in many different ways: visualizing by predicted class, by annotated class, by split,
selecting which ones were wrongly classified, etc.

6.6. Using Rubrix to explore NLP data with Hugging Face datasets and transformers 39

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

Agnews and zeroshot classification

To explore some logged data on Rubrix UI, we are going to predict the topic of some news with a zero-shot classifier
(that we don’t need to train), and compare the predicted category with the ground truth. The dataset we are going to
use in this part is ag_news, with information of over 1 million articles written in English.

First of all, as always, we are going to load the dataset from Hub and visualize its content.

[]: from datasets import load_dataset

dataset = load_dataset("ag_news", split='test[0:100]') # 20% is over 1500 records

[]: dataset[0]

[]: dataset.features

This dataset has articles from four different classes, so we can define a category list, which may come in handy.

[]: categories = ['World', 'Sports', 'Business', 'Sci/Tech']

Now, it’s time to load our zero-shot classification model. We present to options:

1. DistilBart-MNLI

2. squeezebert-mnli

With the first model, the obtained results are probably going to be better, but it is a larger model, which could take
longer to use. We are going to stick with the first one, but feel free to change it, and even to compare them!

[]: from transformers import pipeline

model = "valhalla/distilbart-mnli-12-1"

pl = pipeline('zero-shot-classification', model=model)

Let’s try to make a quick prediction and take a look.

[]: pl(dataset[0]['text'], ['World', 'Sports', 'Business', 'Sci/Tech'], hypothesis_template=
→˓'This example is {}.',multi_label=False)

Knowing how to make a prediction, we can now apply this to the whole selected dataset. Here, we also present you
with two options:

1. Traverse through all records in the dataset, predict each record and log it to Rubrix.

2. Apply a map function to make the predictions and add that field to each record, and then log it as a whole to
Rubrix.

In the following categories, each approach is presented. You choose what you like the most, or even both (be careful
with the time and the duplicated records, though!).

40 Chapter 6. Community

https://huggingface.co/datasets/ag_news
https://huggingface.co/valhalla/distilbart-mnli-12-1

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

First approach

[]: from tqdm import tqdm

for record in tqdm(dataset):

Make the prediction
model_output = pl(record['text'], categories, hypothesis_template='This example is {}

→˓.')

item = rb.TextClassificationRecord(
inputs={"text": record["text"]},
prediction=list(zip(model_output['labels'], model_output['scores'])),
prediction_agent="https://huggingface.co/valhalla/distilbart-mnli-12-1",
annotation=categories[record["label"]],
annotation_agent="https://huggingface.co/datasets/ag_news",
multi_label=True,
metadata={

"split": "train"
},

)

Log to rubrix
rb.log(records=item, name="ag_news")

Second approach

[]: def add_predictions(records):

predictions = pl([record for record in records['text']], categories, hypothesis_
→˓template='This example is {}.')

if isinstance(predictions, list):
return {"labels_predicted": [pred["labels"] for pred in predictions],

→˓"probabilities_predicted": [pred["scores"] for pred in predictions]}
else:

return {"labels_predicted": predictions["labels"], "probabilities_predicted":␣
→˓predictions["scores"]}

[]: dataset_predicted = dataset.map(add_predictions, batched=True, batch_size=4)

[]: dataset_predicted[0]

[]: from tqdm import tqdm

for record in tqdm(dataset_predicted):

item = rb.TextClassificationRecord(
inputs={"text": record["text"]},

(continues on next page)

6.6. Using Rubrix to explore NLP data with Hugging Face datasets and transformers 41

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

(continued from previous page)

prediction=list(zip(record['labels_predicted'], record['probabilities_predicted
→˓'])),

prediction_agent="https://huggingface.co/valhalla/distilbart-mnli-12-1",
annotation=categories[record["label"]],
annotation_agent="https://huggingface.co/datasets/ag_news",
multi_label=True,
metadata={

"split": "train"
},

)

Log to rubrix
rb.log(records=item, name="ag_news")

6.6.7 Summary

In this tutorial, we have learnt:

• To log and explore NLP training datasets with the datasets library.

• To explore NLP predictions using a zeroshot classifier from the model hub.

6.6.8 Next steps

We invite you to check our other tutorials and join our community, a good place to start is our discussion forum.

6.7 Using Rubrix with spaCy

In this tutorial, we will walk through the process of using Rubrix with spaCy, one of the most-widely used NLP
libraries.

6.7.1 Introduction

Our goal is to show you how to explore ``spaCy`` NER predictions with Rubrix.

6.7.2 Install tutorial dependencies

In this tutorial we will be using datasets and spaCy libraries and the en_core_web_trf pretrained English model,
a Roberta-based spaCy model . If you do not have them installed, run:

[]: %pip install datasets -qqq
%pip install -U spacy -qqq
%pip install protobuf

42 Chapter 6. Community

https://github.com/recognai/rubrix/discussions

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

6.7.3 Setup Rubrix

If you have not installed and launched Rubrix, check the installation guide.

[]: import rubrix as rb

6.7.4 Our dataset

For this tutorial, we are going to use the Gutenberg Time dataset from the Hugging Face Hub. It contains all explicit
time references in a dataset of 52,183 novels whose full text is available via Project Gutenberg. From extracts of novels,
we are surely going to find some NER entities. Well, technically, spaCy is going to find them.

[]: from datasets import load_dataset

dataset = load_dataset("gutenberg_time", split="train[0:20]")

Let’s take a look at our dataset! Starting by the length of it and an sneak peek to one instance.

[]: dataset[1]

[]: dataset

6.7.5 Logging spaCy NER entities into Rubrix

Using a Transformer-based pipeline

Let’s install and load our roberta-based pretrained pipeline and apply it to one of our dataset records:

[]: !python -m spacy download en_core_web_trf

[]: import spacy

nlp = spacy.load("en_core_web_trf")
doc = nlp(dataset[0]["tok_context"])
doc

Now let’s apply the nlp pipeline to our dataset records, collecting the tokens and NER entities.

[]: records = [] # Creating and empty record list to save all the records

for record in dataset:

text = record["tok_context"] # We only need the text of each instance
doc = nlp(text) # spaCy Doc creation

Entity annotations
entities = [

(ent.label_, ent.start_char, ent.end_char)
for ent in doc.ents

]

(continues on next page)

6.7. Using Rubrix with spaCy 43

https://github.com/recognai/rubrix#get-started
https://huggingface.co/datasets/gutenberg_time

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

(continued from previous page)

Pre-tokenized input text
tokens = [token.text for token in doc]

Rubrix TokenClassificationRecord list
records.append(

rb.TokenClassificationRecord(
text=text,
tokens=tokens,
prediction=entities,
prediction_agent="spacy.en_core_web_trf",

)
)

[]: rb.log(records=records, name="gutenberg_spacy_ner")

Using a smaller but more efficient pipeline

Now let’s compare with a smaller, but more efficient pre-trained model. Let’s first download it

[]: !python -m spacy download en_core_web_sm -qqq

[]: import spacy

nlp = spacy.load("en_core_web_sm")
doc = nlp(dataset[0]["tok_context"])
doc

[]: records = [] # Creating and empty record list to save all the records

for record in dataset:

text = record["tok_context"] # We only need the text of each instance
doc = nlp(text) # spaCy Doc creation

Entity annotations
entities = [

(ent.label_, ent.start_char, ent.end_char)
for ent in doc.ents

]

Pre-tokenized input text
tokens = [token.text for token in doc]

Rubrix TokenClassificationRecord list
records.append(

rb.TokenClassificationRecord(
text=text,
tokens=tokens,

(continues on next page)

44 Chapter 6. Community

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

(continued from previous page)

prediction=entities,
prediction_agent="spacy.en_core_web_sm",

)
)

[]: rb.log(records=records, name="gutenberg_spacy_ner")

6.7.6 Exploring and comparing en_core_web_sm and en_core_web_trf models

If you go to your gutenberg_spacy_ner you can explore and compare the results of both models.

A handy feature is the predicted by filter, which comes from the prediction_agent parameter of your
TextClassificationRecord.

Some quick qualitative findings about these two models applied to this sample:

• en_core_web_trf makes more conservative predictions, most of them accurate but misses a number of entities
(higher precision, less recall for entities like CARDINAL).

• en_core_web_sm has less precision for most of the entities, confusing for example PERSON with ORG entities,
even with the same surface form within the same paragraph, but has better recall for entities like CARDINAL.

• For TIME entities both model show almost the same distribution and are quite accurate. This could be further
analysed by logging the time annotations in the dataset.

As an illustration of these findings, see an example of a records with en_core_web_sm (top) and en_core_web_trf
(bottom) predicted entities.

6.7. Using Rubrix with spaCy 45

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

6.7.7 Summary

In this tutorial, we have learnt to log and explore spaCy NER models with Rubrix.

6.7.8 Next steps

We invite you to check our other tutorials and join our community, a good place to start is our discussion forum.

6.8 Node classification with kglab and PyTorch Geometric

We introduce the application of neural networks on knowledge graphs using kglab and pytorch_geometric.

Graph Neural networks (GNNs) have gained popularity in a number of practical applications, including knowledge
graphs, social networks and recommender systems. In the context of knowledge graphs, GNNs are being used for tasks
such as link prediction, node classification or knowledge graph embeddings. Many use cases for these tasks are related
to Automatic Knowledge Base Construction (AKBC) and completion.

In this tutorial, we will learn to:

• use kglab to represent a knowledge graph as a Pytorch Tensor, a suitable structure for working with neural nets

• use the widely known pytorch_geometric (PyG) GNN library together with kglab.

• train a GNN with pytorch_geometric and PyTorch Lightning for semi-supervised node classification of
the recipes knowledge graph.

• build and iterate on training data using rubrix with a Human-in-the-loop (HITL) approach.

46 Chapter 6. Community

https://github.com/recognai/rubrix/discussions

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

6.8.1 Our use case in a nutshell

Our goal in this notebook will be to build a semi-supervised node classifier of recipes and ingredients from scratch
using kglab, PyG and Rubrix.

Our classifier will be able to classify the nodes in our 15K nodes knowledge graph according to a set of pre-defined
flavour related categories: sweet, salty, piquant, sour, etc. To account for mixed flavours (e.g., sweet chili sauce),
our model will be multi-class (we have several target labels), multi-label (a node can be labelled as with 0 or several
categories).

6.8.2 Install kglab and Pytorch Geometric

[]: %pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.8.0+cpu.html -qqq
%pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.8.0+cpu.html -qqq
%pip install torch-cluster -f https://pytorch-geometric.com/whl/torch-1.8.0+cpu.html -qqq
%pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.8.0+cpu.html␣
→˓-qqq
%pip install torch-geometric -qqq
%pip install torch -qqq

%pip install kglab -qqq

%pip install pytorch_lightning -qqq

6.8.3 1. Loading and exploring the recipes knowledge graph

We’ll be working with the “recipes” knowledge graph, which is used throughout the kglab tutorial (see the Syllabus).

This version of the recipes kg contains around ~15K recipes linked to their respective ingredients, as well as some other
properties such as cooking time, labels and descriptions.

Let’s load the knowledge graph into a kg object by reading from an RDF file (in Turtle):

[]: import kglab

NAMESPACES = {
"wtm": "http://purl.org/heals/food/",
"ind": "http://purl.org/heals/ingredient/",
"recipe": "https://www.food.com/recipe/",
}

kg = kglab.KnowledgeGraph(namespaces = NAMESPACES)

_ = kg.load_rdf("data/recipe_lg.ttl")

Let’s take a look at our graph structure using the Measure class:

[]: measure = kglab.Measure()
measure.measure_graph(kg)

f"Nodes: {measure.get_node_count()} ; Edges: {measure.get_edge_count()}"

6.8. Node classification with kglab and PyTorch Geometric 47

https://derwen.ai/docs/kgl/tutorial/

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

[]: measure.p_gen.get_tally() # tallies the counts of predicates

[]: measure.s_gen.get_tally() # tallies the counts of predicates

[]: measure.o_gen.get_tally() # tallies the counts of predicates

[]: measure.l_gen.get_tally() # tallies the counts of literals

From the above exploration, we can extract some conclusions to guide the next steps:

• We have a limited number of relationships, being hasIngredient the most frequent.

• We have rather unique literals for labels and descriptions, but a certain amount of repetition for hasCookTime.

• As we would have expected, most frequently referenced objects are ingredients such as Salt, ChikenEgg and
so on.

Now, let’s move into preparing our knowledge graph for PyTorch.

6.8.4 2. Representing our knowledge graph as a PyTorch Tensor

Let’s now represent our kg as a PyTorch tensor using the kglab.SubgraphTensor class.

[]: sg = kglab.SubgraphTensor(kg)

[]: def to_edge_list(g, sg, excludes):
def exclude(rel):

return sg.n3fy(rel) in excludes

relations = sorted(set(g.predicates()))
subjects = set(g.subjects())
objects = set(g.objects())
nodes = list(subjects.union(objects))

relations_dict = {rel: i for i, rel in enumerate(list(relations)) if not␣
→˓exclude(rel)}

this offset enables consecutive indices in our final vector
offset = len(relations_dict.keys())

nodes_dict = {node: i+offset for i, node in enumerate(nodes)}

edge_list = []

for s, p, o in g.triples((None, None, None)):
if p in relations_dict.keys(): # this means is not excluded

src, dst, rel = nodes_dict[s], nodes_dict[o], relations_dict[p]
edge_list.append([src, dst, 2 * rel])
edge_list.append([dst, src, 2 * rel + 1])

turn into str keys and concat
(continues on next page)

48 Chapter 6. Community

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

(continued from previous page)

node_vector = [sg.n3fy(node) for node in relations_dict.keys()] + [sg.n3fy(node) for␣
→˓node in nodes_dict.keys()]
return edge_list, node_vector

[]: edge_list, node_vector = to_edge_list(kg.rdf_graph(), sg, excludes=['skos:description',
→˓'skos:prefLabel'])

[]: len(edge_list) , edge_list[0:5]

Let’s create kglab.Subgraph to be used for encoding/decoding numerical ids and uris, which will be useful for prepar-
ing our training data, as well as making sense of the predictions of our neural net.

[]: sg = kglab.Subgraph(kg=kg, preload=node_vector)

[]: import torch
from torch_geometric.data import Data

tensor = torch.tensor(edge_list, dtype=torch.long).t().contiguous()
edge_index, edge_type = tensor[:2], tensor[2]
data = Data(edge_index=edge_index)
data.edge_type = edge_type

[]: (data.edge_index.shape, data.edge_type.shape, data.edge_type.max())

6.8.5 3. Building a training set with Rubrix

Now that we have a tensor representation of our kg which we can feed into our neural network, let’s now focus on the
training data.

As we will be doing semi-supervised classification, we need to build a training set (i.e., some recipes and ingredients
with ground-truth labels).

For this, we can use Rubrix, an open-source tool for exploring, labeling and iterating on data for AI. Rubrix allows data
scientists and subject matter experts to rapidly iterate on training and evaluation data by enabling iterative, asynchronous
and potentially distributed workflows.

In Rubrix, a very simple workflow during model development looks like this:

1. Log unlabelled data records with rb.log() into a Rubrix dataset. At this step you could use weak supervision
methods (e.g., Snorkel) to pre-populate and then only refine the suggested labels, or use a pretrained model to
guide your annotation process. In our case, we will just log recipe and ingredient “records” along with some
metadata (RDF types, labels, etc.).

2. Rapidly explore and label records in your dataset using the webapp which follows a search-driven approach,
which is especially useful with large, potentially noisy datasets and for quickly leveraging domain knowledge
(e.g., recipes containing WhiteSugar are likely sweet). For the tutorial, we have spent around 30min for labelling
around 600 records.

3. Retrieve your annotations any time using rb.load() or rb.snapshot(), which return a convenient pd.
Dataframemaking it quite handy to process and use for model development. In our case, we will load a snapshot,
do a train_test_split with scikit_learn, and then use this for training our GNN.

4. After training a model, you can go back to step 1, this time using your model and its predictions, to spot im-
provements, quickly label other portions of the data, and so on. In our case, as we’ve started with a very limited

6.8. Node classification with kglab and PyTorch Geometric 49

https://github.com/recognai/rubrix

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

training set (~600 examples), we will use our node classifier and rb.log() it’s predictions over the rest of our
data (unlabelled recipes and ingredients).

[]: LABELS = ['Bitter', 'Meaty', 'Piquant', 'Salty', 'Sour', 'Sweet']

Setup Rubrix

If you have not installed and launched Rubrix, check the installation guide.

[]: import rubrix as rb

Preparing our raw dataset of recipes and ingredients

[]: import pandas as pd
sparql = """

SELECT distinct *
WHERE {

?uri a wtm:Recipe .
?uri a ?type .
?uri skos:definition ?definition .
?uri wtm:hasIngredient ?ingredient

}
"""
df = kg.query_as_df(sparql=sparql)

We group the ingredients into one column containing lists:
recipes_df = df.groupby(['uri', 'definition', 'type'])['ingredient'].apply(list).reset_
→˓index(name='ingredients') ; recipes_df

sparql_ingredients = """
SELECT distinct *
WHERE {

?uri a wtm:Ingredient .
?uri a ?type .
OPTIONAL { ?uri skos:prefLabel ?definition }

}
"""

df = kg.query_as_df(sparql=sparql_ingredients)
df['ingredients'] = None

ing_recipes_df = pd.concat([recipes_df, df]).reset_index(drop=True)

ing_recipes_df.fillna('', inplace=True) ; ing_recipes_df

50 Chapter 6. Community

https://github.com/recognai/rubrix#get-started

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

Logging into Rubrix

[]: import rubrix as rb

records = []
for i, r in ing_recipes_df.iterrows():

item = rb.TextClassificationRecord(
inputs={

"id":r.uri,
"definition": r.definition,
"ingredients": str(r.ingredients),
"type": r.type

}, # log node fields
prediction=[(label, 0.0) for label in LABELS], # log "dummy" predictions for␣

→˓aiding annotation
metadata={'ingredients': [ing.replace('ind:','') for ing in r.ingredients],

→˓"type": r.type}, # metadata filters for quick exploration and annotation
prediction_agent="kglab_tutorial", # who's performing/logging the prediction
multi_label=True

)
records.append(item)

[]: len(records)

[]: rb.log(records=records, name="kg_classification_tutorial")

Annotation session with Rubrix (optional)

In this step you can go to your rubrix dataset and annotate some examples of each class.

If you have no time to do this, just skip this part as we have prepared a dataset for you with around ~600 examples.

Loading our labelled records and create a train_test split (optional)

If you have no time to do this, just skip this part as we have prepared a dataset for you.

[]: rb.snapshots(name="kg_classification_tutorial")

Once you have annotated your dataset, you will find an snapshot id on the previous list. This id should be place in the
next command. In our case, it was 1620136587.907149.

[]: df = rb.load(name="kg_classification_tutorial", snapshot='1620136587.907149') ; df.head()

[]: from sklearn.model_selection import train_test_split

train_df, test_df = train_test_split(df)
train_df.to_csv('data/train_recipes_new.csv')
test_df.to_csv('data/test_recipes_new.csv')

6.8. Node classification with kglab and PyTorch Geometric 51

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

Creating PyTorch train and test sets

Here we take our train and test datasets and transform them into torch.Tensor objects with the help of our kglab
Subgraph for turning uris into torch.long indices.

[]: import pandas as pd

train_df = pd.read_csv('data/train_recipes.csv') # use your own labelled datasets if you
→˓'ve created a snapshot
test_df = pd.read_csv('data/test_recipes.csv')

we make sure lists are parsed correctly
train_df.labels = train_df.labels.apply(eval)
test_df.labels = test_df.labels.apply(eval)

[]: train_df

Let’s create label lookups for label to int and viceversa

[]: label2id = {label:i for i,label in enumerate(LABELS)} ;
id2label = {i:l for l,i in label2id.items()} ; (id2label, label2id)

The following function turns our DataFrame into numerical arrays for node indices and labels

[]: import numpy as np

def create_indices_labels(df):
turn our dense labels into a one-hot list
def one_hot(label_ids):

a = np.zeros(len(LABELS))
a.put(label_ids, np.ones(len(label_ids)))
return a

indices, labels = [], []
for uri, label in zip(df.uri.tolist(), df.labels.tolist()):

indices.append(sg.transform(uri))
labels.append(one_hot([label2id[label] for label in label]))

return indices, labels

Finally, let’s turn our dataset into PyTorch tensors

[]: train_indices, train_labels = create_indices_labels(train_df)
test_indices, test_labels = create_indices_labels(test_df)

train_idx = torch.tensor(train_indices, dtype=torch.long)
train_y = torch.tensor(train_labels, dtype=torch.float)

test_idx = torch.tensor(test_indices, dtype=torch.long)
test_y = torch.tensor(test_labels, dtype=torch.float) ; train_idx[:10], train_y

Let’s see if we can recover the correct URIs for our numerical ids using our kglab.Subgraph

[]: (train_df.loc[0], sg.inverse_transform(15380))

52 Chapter 6. Community

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

6.8.6 4. Creating a Subgraph of recipe and ingredient nodes

Here we create a node list to be used as a seed for building our PyG subgraph (using k-hops as we will see in the next
section). Our goal will be to start only with recipes and ingredients, as all nodes passed through the GNN will be
classified and those are our main target.

[]: node_idx = torch.LongTensor([
sg.transform(i) for i in ing_recipes_df.uri.values

])

[]: node_idx.max(), node_idx.shape

[]: ing_recipes_df.iloc[1]

[]: sg.inverse_transform(node_idx[1])

[]: node_idx[0:10]

6.8.7 5. Semi-supervised node classification with PyTorch Geometric

For the node classification task we are given the ground-truth labels (our recipes and ingredients training set) for a
small subset of nodes, and we want to predict the labels for all the remaining nodes (our recipes and ingredients
test set and unlabelled nodes).

Graph Convolutional Networks

To get a great intro to GCNs we recommend you to check Kipf’s blog post on the topic.

In a nutshell, GCNs are multi-layer neural works which apply “convolutions” to nodes in graphs by sharing and applying
the same filter parameters over all locations in the graph.

Additionally, modern GCNs such as those implemented in PyG use message passing mechanisms, where vertices
exchange information with their neighbors, and send messages to each other.

6.8. Node classification with kglab and PyTorch Geometric 53

https://tkipf.github.io/graph-convolutional-networks/

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

Multi-layer Graph Convolutional Network (GCN) with first-order filters. Source: https://tkipf.github.io/
graph-convolutional-networks

Relational Graph Convolutional Networks

Relational Graph Convolutional Networks (R-GCNs) were introduced by Schlichtkrull et al. 2017, as an extension of
GCNs to deal with multi-relational knowledge graphs.
You can see below the computation model for nodes:

54 Chapter 6. Community

https://tkipf.github.io/graph-convolutional-networks
https://tkipf.github.io/graph-convolutional-networks
https://arxiv.org/abs/1703.06103

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

Computation of the update of a single graph node(red) in the R-GCN model.. Source: https://arxiv.org/abs/1703.
06103

Creating a PyG subgraph

Here we build a subgraph with k hops from target to source starting with all recipe and ingredient nodes:

[]: from torch_geometric.utils import k_hop_subgraph
here we take all connected nodes with k hops
k = 1
node_idx, edge_index, mapping, edge_mask = k_hop_subgraph(

node_idx,
k,
data.edge_index,
relabel_nodes=False

(continues on next page)

6.8. Node classification with kglab and PyTorch Geometric 55

https://arxiv.org/abs/1703.06103
https://arxiv.org/abs/1703.06103

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

(continued from previous page)

)

We have increased the size of our node set:

[]: node_idx.shape

[]: data.edge_index.shape

Here we compute some measures needed for defining the size of our layers

[]: data.edge_index = edge_index

data.num_nodes = data.edge_index.max().item() + 1

data.num_relations = data.edge_type.max().item() + 1

data.edge_type = data.edge_type[edge_mask]

data.num_classes = len(LABELS)

data.num_nodes, data.num_relations, data.num_classes

Defining a basic Relational Graph Convolutional Network

[]: from torch_geometric.nn import FastRGCNConv, RGCNConv
import torch.nn.functional as F

[]: RGCNConv?

[]: class RGCN(torch.nn.Module):
def __init__(self, num_nodes, num_relations, num_classes, out_channels=16, num_

→˓bases=30, dropout=0.0, layer_type=FastRGCNConv,):

super(RGCN, self).__init__()

self.conv1 = layer_type(
num_nodes,
out_channels,
num_relations,
num_bases=num_bases

)
self.conv2 = layer_type(

out_channels,
num_classes,
num_relations,
num_bases=num_bases

)
self.dropout = torch.nn.Dropout(dropout)

def forward(self, edge_index, edge_type):
(continues on next page)

56 Chapter 6. Community

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

(continued from previous page)

x = F.relu(self.conv1(None, edge_index, edge_type))
x = self.dropout(x)
x = self.conv2(x, edge_index, edge_type)
return torch.sigmoid(x)

Create and visualizing our model

[]: model = RGCN(
num_nodes=data.num_nodes,
num_relations=data.num_relations,
num_classes=data.num_classes,
#out_channels=64,
dropout=0.2,
layer_type=RGCNConv

) ; model

[]: # code adapted from https://colab.research.google.com/drive/
→˓14OvFnAXggxB8vM4e8vSURUp1TaKnovzX
%matplotlib inline
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
from pytorch_lightning.metrics.utils import to_categorical

def visualize(h, color, labels):
z = TSNE(n_components=2).fit_transform(h.detach().cpu().numpy())

plt.figure(figsize=(10,10))
plt.xticks([])
plt.yticks([])

scatter = plt.scatter(z[:, 0], z[:, 1], s=70, c=color, cmap="Set2")
legend = plt.legend(scatter.legend_elements()[0],labels, loc="upper right", title=

→˓"Labels",) #*scatter.legend_elements()
plt.show()

[]: pred = model(edge_index, edge_type)

[]: visualize(pred[train_idx], color=to_categorical(train_y), labels=LABELS)

[]: visualize(pred[test_idx], color=to_categorical(test_y), labels=LABELS)

6.8. Node classification with kglab and PyTorch Geometric 57

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

Training our RGCN

[]: device = torch.device('cpu') # ('cuda')
data = data.to(device)
model = model.to(device)
optimizer = torch.optim.AdamW(model.parameters())
loss_module = torch.nn.BCELoss()

def train():
model.train()
optimizer.zero_grad()
out = model(data.edge_index, data.edge_type)
loss = loss_module(out[train_idx], train_y)
loss.backward()
optimizer.step()
return loss.item()

def accuracy(predictions, y):
predictions = np.round(predictions)
return predictions.eq(y).to(torch.float).mean()

@torch.no_grad()
def test():

model.eval()
pred = model(data.edge_index, data.edge_type)
train_acc = accuracy(pred[train_idx], train_y)
test_acc = accuracy(pred[test_idx], test_y)
return train_acc.item(), test_acc.item()

[]: for epoch in range(1, 50):
loss = train()
train_acc, test_acc = test()
print(f'Epoch: {epoch:02d}, Loss: {loss:.4f}, Train: {train_acc:.4f} '

f'Test: {test_acc:.4f}')

Model visualization

[]: pred = model(edge_index, edge_type)

[]: visualize(pred[train_idx], color=to_categorical(train_y), labels=LABELS)

[]: visualize(pred[test_idx], color=to_categorical(test_y), labels=LABELS)

58 Chapter 6. Community

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

6.8.8 6. Using our model and analyzing its predictions with Rubrix

Let’s see the shape of our model predictions

[]: pred = model(edge_index, edge_type) ; pred

[]: def find(tensor, values):
return torch.nonzero(tensor[..., None] == values)

Analizing predictions over the test set

[]: test_idx = find(node_idx,test_idx)[:,0] ; len(test_idx)

[]: index = torch.zeros(node_idx.shape[0], dtype=bool)
index[test_idx] = True
idx = node_idx[index]

[]: uris = [sg.inverse_transform(i) for i in idx]
predicted_labels = [l for l in pred[idx]]

[]: predictions = list(zip(uris,predicted_labels)) ; predictions[0:2]

[]: import rubrix as rb

records = []
for uri,predicted_labels in predictions:

ids = ing_recipes_df.index[ing_recipes_df.uri == uri]
if len(ids) > 0:

r = ing_recipes_df.iloc[ids]
get the gold labels from our test set
gold_labels = test_df.iloc[test_df.index[test_df.uri == uri]].labels.values[0]

item = rb.TextClassificationRecord(
inputs={"id":r.uri.values[0], "definition": r.definition.values[0],

→˓"ingredients": str(r.ingredients.values[0]), "type": r.type.values[0]},
prediction=[(id2label[i], score) for i,score in enumerate(predicted_

→˓labels)],
annotation=gold_labels,
metadata={'ingredients': r.ingredients.values[0], "type": r.type.

→˓values[0]},
prediction_agent="node_classifier_v1",
multi_label=True

)
records.append(item)

[]: rb.log(records, name="kg_classification_test_analysis")

6.8. Node classification with kglab and PyTorch Geometric 59

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

Analizing predictions over unseen nodes (and potentially relabeling them)

Let’s find the ids for the nodes in our training and test sets

[]: train_test_idx = find(node_idx,torch.cat((test_idx, train_idx)))[:,0] ; len(train_test_
→˓idx)

Let’s get the ids, uris and labels of the nodes which were not in our train/test datasets

[]: index = torch.ones(node_idx.shape[0], dtype=bool)
index[train_test_idx] = False
idx = node_idx[index]

We use our SubgraphTensor for getting back our URIs and build uri,predicted_labels pairs:

[]: uris = [sg.inverse_transform(i) for i in idx]
predicted_labels = [l for l in pred[idx]]

[]: predictions = list(zip(uris,predicted_labels)) ; predictions[0:2]

[]: import rubrix as rb

records = []
for uri,predicted_labels in predictions:

ids = ing_recipes_df.index[ing_recipes_df.uri == uri]
if len(ids) > 0:

r = ing_recipes_df.iloc[ids]
item = rb.TextClassificationRecord(

inputs={"id":r.uri.values[0], "definition": r.definition.values[0],
→˓"ingredients": str(r.ingredients.values[0]), "type": r.type.values[0]},

prediction=[(id2label[i], score) for i,score in enumerate(predicted_
→˓labels)],

metadata={'ingredients': r.ingredients.values[0], "type": r.type.
→˓values[0]},

prediction_agent="node_classifier_v1",
multi_label=True

)
records.append(item)

[]: rb.log(records, name="kg_node_classification_unseen_nodes_v3")

6.8.9 Exercise 1: Training experiments with PyTorch Lightning

[]: #!pip install wandb -qqq # optional

[]: !wandb login #optional

[]: from torch_geometric.data import Data, DataLoader

data.train_idx = train_idx
data.train_y = train_y

(continues on next page)

60 Chapter 6. Community

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

(continued from previous page)

data.test_idx = test_idx
data.test_y = test_y

dataloader = DataLoader([data], batch_size=1); dataloader

[]: import torch
import pytorch_lightning as pl
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.loggers import WandbLogger

class RGCNNodeClassification(pl.LightningModule):

def __init__(self, **model_kwargs):
super().__init__()

self.model = RGCN(**model_kwargs)
self.loss_module = torch.nn.BCELoss()

def forward(self, edge_index, edge_type):
return self.model(edge_index, edge_type)

def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=0.01, weight_decay=0.001)
return optimizer

def training_step(self, batch, batch_idx):
idx, y = data.train_idx, data.train_y
edge_index, edge_type = data.edge_index, data.edge_type
x = self.forward(edge_index, edge_type)
loss = self.loss_module(x[idx], y)
x = x.detach()
self.log('train_acc', accuracy(x[idx], y), prog_bar=True)
self.log('train_loss', loss)
return loss

def validation_step(self, batch, batch_idx):
idx, y = data.test_idx, data.test_y
edge_index, edge_type = data.edge_index, data.edge_type
x = self.forward(edge_index, edge_type)
loss = self.loss_module(x[idx], y)
x = x.detach()
self.log('val_acc', accuracy(x[idx], y), prog_bar=True)
self.log('val_loss', loss)

[]: pl.seed_everything()

[]: model_pl = RGCNNodeClassification(
num_nodes=data.num_nodes,
num_relations=data.num_relations,
num_classes=data.num_classes,
#out_channels=64,

(continues on next page)

6.8. Node classification with kglab and PyTorch Geometric 61

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

(continued from previous page)

dropout=0.2,
#layer_type=RGCNConv

)

[]: early_stopping = EarlyStopping(monitor='val_acc', patience=10, mode='max')

[]: trainer = pl.Trainer(
default_root_dir='pl_runs',
checkpoint_callback=ModelCheckpoint(save_weights_only=True, mode="max", monitor="val_

→˓acc"),
max_epochs=200,
#logger= WandbLogger(), # optional
callbacks=[early_stopping]

)

[]: trainer.fit(model_pl, dataloader, dataloader)

6.8.10 Exercise 2: Bootstrapping annotation with a zeroshot-classifier

[]: !pip install transformers -qqq

[]: from transformers import pipeline

pretrained_model = "valhalla/distilbart-mnli-12-1" # "typeform/squeezebert-mnli"

pl = pipeline('zero-shot-classification', model=pretrained_model)

[]: pl("chocolate cake", LABELS, hypothesis_template='The flavour is {}.',multi_label=True)

[]: import rubrix as rb

records = []
for i, r in ing_recipes_df[50:150].iterrows():

preds = pl(r.definition, LABELS, hypothesis_template='The flavour is {}.', multi_
→˓label=True)

item = rb.TextClassificationRecord(
inputs={

"id":r.uri,
"definition": r.definition,
"ingredients": str(r.ingredients),
"type": r.type

},
prediction=list(zip(preds['labels'], preds['scores'])), # TODO: here we log␣

→˓he predictions of our zeroshot pipeline as a list of tuples (label, score)
metadata={'ingredients': r.ingredients, "type": r.type},
prediction_agent="valhalla/distilbart-mnli-12-1",
multi_label=True

)
records.append(item)

62 Chapter 6. Community

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

[]: rb.log(records, name='kg_zeroshot')

6.9 Using Rubrix and Snorkel for human-in-the-loop weak supervi-
sion

In this tutorial, we will walk through the process of using Rubrix to improve weak supervision and data programming
workflows with the amazing Snorkel library.

6.9.1 Introduction

Our goal is to show you how you can incorporate Rubrix into data programming workflows to programatically
build training data with a human-in-the-loop approach. We will use the widely-known Snorkel library, but a similar
approach can be used with other data augmentation libraries such as Textattack or nlpaug.

What is weak supervision? and Snorkel?

Weak supervision is a branch of machine learning based on getting lower quality labels more efficiently. We can achieve
this by using Snorkel, a library for programmatically building and managing training datasets without manual labeling.

This tutorial

In this tutorial, we’ll follow the Spam classification tutorial from Snorkel’s documentation and show you how to extend
weak supervision workflows with Rubrix.

The tutorial is organized into:

1. Spam classification with Snorkel: we provide a brief overview of the tutorial

2. Extending and finding labeling functions with Rubrix: we analyze different strategies for extending the pro-
posed labeling functions and for exploring new labeling functions

6.9.2 Install Snorkel, Textblob and spaCy

[1]: !pip install snorkel textblob spacy -qqq

[2]: !python -m spacy download en_core_web_sm -qqq

Download and installation successful
You can now load the package via spacy.load('en_core_web_sm')

6.9. Using Rubrix and Snorkel for human-in-the-loop weak supervision 63

https://www.snorkel.org/
https://github.com/QData/TextAttack
https://github.com/makcedward/nlpaug
https://www.snorkel.org/use-cases/01-spam-tutorial

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

6.9.3 1. Spam classification with Snorkel

Rubrix allows you to log and track data for different NLP tasks (such as Token Classification or Text
Classification).

In this tutorial, we will use the YouTube Spam Collection dataset which a binary classification task for detecting spam
comments in youtube videos.

The dataset

We have a training set and and a test set. The first one does not include the label of the samples and it is set to -1. The
test set contains ground-truth labels from the original dataset, where the label is set to 1 if it’s considered SPAM and 0
for HAM.

In this tutorial we’ll be using Snorkel’s data programming methods for programatically building a training set with the
help of Rubrix for analizing and reviewing data. We’ll then train a model with this train set and evaluate it against the
test set.

Let’s load it in Pandas and take a look!

[3]: import pandas as pd
df_train = pd.read_csv('data/yt_comments_train.csv')
df_test = pd.read_csv('data/yt_comments_test.csv')
display(df_train)
display(df_test)

Unnamed: 0 author date \
0 0 Alessandro leite 2014-11-05T22:21:36
1 1 Salim Tayara 2014-11-02T14:33:30
2 2 Phuc Ly 2014-01-20T15:27:47
3 3 DropShotSk8r 2014-01-19T04:27:18
4 4 css403 2014-11-07T14:25:48
...
1581 443 Themayerlife NaN
1582 444 Fill Reseni 2015-05-27T17:10:53.724000
1583 445 Greg Fils Aimé NaN
1584 446 Lil M NaN
1585 447 AvidorFilms NaN

text label video
0 pls http://www10.vakinha.com.br/VaquinhaE.aspx... -1.0 1
1 if your like drones, plz subscribe to Kamal Ta... -1.0 1
2 go here to check the views :3 -1.0 1
3 Came here to check the views, goodbye. -1.0 1
4 i am 2,126,492,636 viewer :D -1.0 1
...
1581 Check out my mummy chanel! -1.0 4
1582 The rap: cool Rihanna: STTUUPID -1.0 4
1583 I hope everyone is in good spirits I'm a h... -1.0 4
1584 Lil m !!!!! Check hi out!!!!! Does live the wa... -1.0 4
1585 Please check out my youtube channel! Just uplo... -1.0 4

[1586 rows x 6 columns]

64 Chapter 6. Community

http://www.dt.fee.unicamp.br/~tiago//youtubespamcollection/

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

Unnamed: 0 author date \
0 27 2015-05-25T23:42:49.533000
1 194 MOHAMED THASLEEM 2015-05-24T07:03:59.488000
2 277 AlabaGames 2015-05-22T00:31:43.922000
3 132 Manish Ray 2015-05-23T08:55:07.512000
4 163 Sudheer Yadav 2015-05-28T10:28:25.133000
..
245 32 GamezZ MTA 2015-05-09T00:08:26.185000
246 176 Viv Varghese 2015-05-25T08:59:50.837000
247 314 yakikukamo FIRELOVER 2013-07-18T17:07:06.152000
248 25 James Cook 2013-10-10T18:08:07.815000
249 11 Trulee IsNotAmazing 2013-09-07T14:18:22.601000

text label video
0 Check out this video on YouTube: 1 5
1 super music 0 5
2 Subscribe my channel I RECORDING FIFA 15 GOAL... 1 5
3 This song is so beauty 0 5
4 SEE SOME MORE SONG OPEN GOOGLE AND TYPE Shakir... 1 5
..
245 Pleas subscribe my channel 1 5
246 The best FIFA world cup song for sure. 0 5
247 hey you ! check out the channel of Alvar Lake !! 1 5
248 Hello Guys...I Found a Way to Make Money Onlin... 1 5
249 Beautiful song beautiful girl it works 0 5

[250 rows x 6 columns]

Labeling functions

Labeling functions (LFs) are Python function which encode heuristics (such as keywords or pattern matching), distant
supervision methods (using external knowledge) or even “low-quality” crowd-worker label datasets. The goal is to
create a probabilistic model which is able to combine the output of a set of noisy labels assigned by this LFs. Snorkel
provides several strategies for defining and combining LFs, for more information check Snorkel LFs tutorial.

In this tutorial, we will first define the LFs from the Snorkel tutorial and then show you how you can use Rubrix to
enhance this type of weak-supervision workflows.

Let’s take a look at the original LFs:

[4]: import re

from snorkel.labeling import labeling_function, LabelingFunction
from snorkel.labeling.lf.nlp import nlp_labeling_function
from snorkel.preprocess import preprocessor
from snorkel.preprocess.nlp import SpacyPreprocessor

from textblob import TextBlob

ABSTAIN = -1
HAM = 0
SPAM = 1

(continues on next page)

6.9. Using Rubrix and Snorkel for human-in-the-loop weak supervision 65

https://www.snorkel.org/use-cases/01-spam-tutorial#a-gentle-introduction-to-lfs

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

(continued from previous page)

Keyword searches
@labeling_function()
def check(x):

return SPAM if "check" in x.text.lower() else ABSTAIN

@labeling_function()
def check_out(x):

return SPAM if "check out" in x.text.lower() else ABSTAIN

Heuristics
@labeling_function()
def short_comment(x):

"""Ham comments are often short, such as 'cool video!'"""
return HAM if len(x.text.split()) < 5 else ABSTAIN

List of keywords
def keyword_lookup(x, keywords, label):

if any(word in x.text.lower() for word in keywords):
return label

return ABSTAIN

def make_keyword_lf(keywords, label=SPAM):
return LabelingFunction(

name=f"keyword_{keywords[0]}",
f=keyword_lookup,
resources=dict(keywords=keywords, label=label),

)

"""Spam comments talk about 'my channel', 'my video', etc."""
keyword_my = make_keyword_lf(keywords=["my"])

"""Spam comments ask users to subscribe to their channels."""
keyword_subscribe = make_keyword_lf(keywords=["subscribe"])

"""Spam comments post links to other channels."""
keyword_link = make_keyword_lf(keywords=["http"])

"""Spam comments make requests rather than commenting."""
keyword_please = make_keyword_lf(keywords=["please", "plz"])

"""Ham comments actually talk about the video's content."""
keyword_song = make_keyword_lf(keywords=["song"], label=HAM)

Pattern matching with regex
@labeling_function()
def regex_check_out(x):

return SPAM if re.search(r"check.*out", x.text, flags=re.I) else ABSTAIN

Third party models (TextBlob and spaCy)

(continues on next page)

66 Chapter 6. Community

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

(continued from previous page)

TextBlob
@preprocessor(memoize=True)
def textblob_sentiment(x):

scores = TextBlob(x.text)
x.polarity = scores.sentiment.polarity
x.subjectivity = scores.sentiment.subjectivity
return x

@labeling_function(pre=[textblob_sentiment])
def textblob_subjectivity(x):

return HAM if x.subjectivity >= 0.5 else ABSTAIN

@labeling_function(pre=[textblob_sentiment])
def textblob_polarity(x):

return HAM if x.polarity >= 0.9 else ABSTAIN

spaCy

There are two different methods to use spaCy:
Method 1:
spacy = SpacyPreprocessor(text_field="text", doc_field="doc", memoize=True)

@labeling_function(pre=[spacy])
def has_person(x):

"""Ham comments mention specific people and are short."""
if len(x.doc) < 20 and any([ent.label_ == "PERSON" for ent in x.doc.ents]):

return HAM
else:

return ABSTAIN

Method 2:
@nlp_labeling_function()
def has_person_nlp(x):

"""Ham comments mention specific people."""
if any([ent.label_ == "PERSON" for ent in x.doc.ents]):

return HAM
else:

return ABSTAIN

[5]: # List of labeling functions proposed at
original_labelling_functions = [

keyword_my,
keyword_subscribe,
keyword_link,
keyword_please,
keyword_song,
regex_check_out,
short_comment,
has_person_nlp,
textblob_polarity,
textblob_subjectivity,

]

6.9. Using Rubrix and Snorkel for human-in-the-loop weak supervision 67

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

We have mentioned multiple functions that could be used to label our data, but we never gave a solution on how to deal
with the overlap and conflicts.

To handle this issue, Snorkel provide the LabelModel. You can read more about how it works in the Snorkel tutorial
and the documentation.

Let’s just use a LabelModel to test the proposed LFs and let’s wrap it into a function so we can reuse it to evaluate
new LFs along the way:

[7]: from snorkel.labeling import PandasLFApplier
from snorkel.labeling.model import LabelModel

def test_label_model(lfs):

Apply LFs to datasets
applier = PandasLFApplier(lfs=lfs)
L_train = applier.apply(df=df_train)
L_test = applier.apply(df=df_test)
Y_test = df_test.label.values # y_test labels

label_model = LabelModel(cardinality=2, verbose=True) # cardinality = nº of classes
label_model.fit(L_train=L_train, n_epochs=500, log_freq=100, seed=123)

label_model_acc = label_model.score(L=L_test, Y=Y_test, tie_break_policy="random")[
"accuracy"

]
print(f"{'Label Model Accuracy:':<25} {label_model_acc * 100:.1f}%")
return label_model

label_model = test_label_model(original_labelling_functions)

100%|| 1586/1586 [00:00<00:00, 4488.67it/s]
100%|| 250/250 [00:00<00:00, 5893.59it/s]

Label Model Accuracy: 85.6%

6.9.4 2. Extending and finding labeling functions with Rubrix

In this section, we’ll review some of the LFs from the original tutorial and see how to use Rubrix in combination with
Snorkel.

Setup Rubrix

If you have not installed and launched Rubrix, check the Setup and Installation guide.

[19]: import rubrix as rb

68 Chapter 6. Community

https://www.snorkel.org/use-cases/01-spam-tutorial#4-combining-labeling-function-outputs-with-the-label-model
https://snorkel.readthedocs.io/en/master/packages/_autosummary/labeling/snorkel.labeling.model.label_model.LabelModel.html#snorkel.labeling.model.label_model.LabelModel
https://docs.rubrix.ml/en/latest/getting_started/setup%26installation.html

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

Exploring the training set with Rubrix for initial inspiration

Rubrix lets you track data for different NLP tasks (such as Token Classification or Text Classification).

Let’s log our unlabelled training set into Rubrix for initial inspiration:

[20]: records= []

for index, record in df_train.iterrows():
item = rb.TextClassificationRecord(

id=index,
inputs=record["text"],
metadata = {

"author": record.author,
"video": str(record.video)

}
)
records.append(item)

[21]: rb.log(records=records, name="yt_spam_snorkel")

[21]: BulkResponse(dataset='yt_spam_snorkel', processed=1586, failed=0)

After a few seconds, we have a fully searchable version of our unlabelled training set, which can be used for quickly
defining new LFs or improve existing ones. We can of course view our data on a text editor, using Pandas or printing
rows on a Jupyter Notebook, but Rubrix focuses on making this easy and powerful with features like searching using
the Elasticsearch’s query string DSL, or the ability to log arbitrary inputs and metadata items.

First thing we can see on our Rubrix Dataset are the most frequent keywords on our text field. With just a quick look,
we can see the coverage of two of the proposed keyword-based LFs (using the word “check” and “subscribe”):

Another thing we can do is to explore by metadata. Let’s say we want to check the distribution by authors, as maybe
some authors are posting SPAM several times with different wordings. Here we can see one of the top posting authors,
who’s also a top spammer, but seems to be using very similar messages:

6.9. Using Rubrix and Snorkel for human-in-the-loop weak supervision 69

https://docs.rubrix.ml/en/latest/reference/rubrix_webapp_reference.html#search-input

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

Exploring some other top spammers, we see some of them use the word “money”, let’s check some examples using
this keyword:

Yes, it seems using “money” has some correlation with SPAM and a overlaps with “check” but still covers other data
points (as we can see in the Keywords component).

Let’s add this new LF to see its effect:

[22]: @labeling_function()
def money(x):

return SPAM if "money" in x.text.lower() else ABSTAIN

70 Chapter 6. Community

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

[23]: label_model = test_label_model(original_labelling_functions + [money])

100%|| 1586/1586 [00:00<00:00, 3540.46it/s]
100%|| 250/250 [00:00<00:00, 4887.67it/s]

Label Model Accuracy: 86.8%

Yes! With just some quick exploration we’ve improved the accuracy of the Label Model by 1.2%.

Exploring and improving heuristic LFs

We’ve already seen how to use keywords to label our data, the next step would be to use heuristics to do the labeling.

A simple approach proposed in the original Snorkel tutorial is checking the length of the comments’ text, considering
it SPAM if its length is lower than a threshold.

To find a suitable threshold we can use Rubrix to visually explore the messages, similar to what we did before with the
author selection.

[24]: records= []

for index, record in df_train.iterrows():
item = rb.TextClassificationRecord(

id=index,
inputs=record["text"],
metadata = {

"textlen": str(len(record.text.split())), # Nº of 'words' in the sample
}

)
records.append(item)

[25]: rb.log(records=records, name="yt_spam_snorkel_heuristic")

[25]: BulkResponse(dataset='yt_spam_snorkel_heuristic', processed=1586, failed=0)

In the original tutorial, a threshold of 5 words is used, by exploring in Rubrix, we see we can go above that threshold.
Let’s try with 20 words:

[26]: @labeling_function()
def short_comment_2(x):

"""Ham comments are often short, such as 'cool video!'"""
return HAM if len(x.text.split()) < 20 else ABSTAIN

[27]: # let's replace the original short comment function
original_labelling_functions[6]

[27]: LabelingFunction short_comment, Preprocessors: []

[28]: original_labelling_functions[6] = short_comment_2

[29]: label_model = test_label_model(original_labelling_functions + [money])

100%|| 1586/1586 [00:00<00:00, 5388.84it/s]
100%|| 250/250 [00:00<00:00, 5542.86it/s]

6.9. Using Rubrix and Snorkel for human-in-the-loop weak supervision 71

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

Label Model Accuracy: 90.8%

Yes! With some additional exploration we’ve improved the accuracy of the Label Model by 5.2%.

[30]: current_lfs = original_labelling_functions + [money]

Exploring third-party models LFs with Rubrix

Another class of Snorkel LFs are those third-party models, which can be combined with the Label Model.

Rubrix can be used for exploring how these models work with unlabelled data in order to define more precise LFs.

Let’s see this with the original Textblob’s based labelling functions.

Textblob

Let’s explore Textblob predictions on the training set with Rubrix:

[31]: from textblob import TextBlob

records= []
for index, record in df_train.iterrows():

scores = TextBlob(record["text"])
item = rb.TextClassificationRecord(

id=str(index),
inputs=record["text"],
multi_label= False,
prediction=[("subjectivity", max(0.0, scores.sentiment.subjectivity))],
prediction_agent="TextBlob",
metadata = {

"author": record.author,
"video": str(record.video)

}
)

records.append(item)

[32]: rb.log(records=records, name="yt_spam_snorkel_textblob")

[32]: BulkResponse(dataset='yt_spam_snorkel_textblob', processed=1586, failed=0)

Checking the dataset, we can filter our data based on the confidence of our classifier. This can help us since the
predictions of our TextBlob tend to be SPAM the lower the subjectivity is. We can take advantage of this by filtering
the predictions using confidence intervals:

72 Chapter 6. Community

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

6.9.5 3. Checking and curating programatically created data

In this section, we’re going to analyse the training set we’re able to generate using our data programming model (the
Label Model).

First thing, we need to do is to remove the unlabeled data. Remember we’re only labeling a subset using our model:

[]: from snorkel.labeling import filter_unlabeled_dataframe

applier = PandasLFApplier(lfs=current_lfs)
L_train = applier.apply(df=df_train)
L_test = applier.apply(df=df_test)

df_train_filtered, probs_train_filtered = filter_unlabeled_dataframe(
X=df_train,
y=label_model.predict_proba(L_train), # Probabilities of each data point for each␣

→˓class
L=L_train

)

Now that we have our data, we can explore the results in Rubrix and manually relabel those cases that have been wrongly
classified or keep exploring the performance of our LFs.

[38]: records = []
for i, (index, record) in enumerate(df_train_filtered.iterrows()):

item = rb.TextClassificationRecord(
inputs=record["text"],
our scores come from probs_train_filtered
probs_train_filtered[i][j] is the probability the sample i belongs to class j
prediction=[("HAM", probs_train_filtered[i][0]), # 0 for HAM

("SPAM", probs_train_filtered[i][1])], # 1 for SPAM
prediction_agent="LabelModel",

(continues on next page)

6.9. Using Rubrix and Snorkel for human-in-the-loop weak supervision 73

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

(continued from previous page)

)
records.append(item)

[40]: rb.log(records=records, name="yt_filtered_classified_sample")

[40]: BulkResponse(dataset='yt_filtered_classified_sample_2', processed=1568, failed=0)

With this Rubrix Dataset, we can explore the predictions of our label model. We could add the label model output as
annotations to create a training set and share it subject matter experts for review e.g., for relabelling problematic
data points.

To do this, simply adding the max. probability class as annotation:

[36]: records = []
for i, (index, record) in enumerate(df_train_filtered.iterrows()):

gold_label = "SPAM" if probs_train_filtered[i][1] > probs_train_filtered[i][0] else
→˓"HAM"

item = rb.TextClassificationRecord(
inputs=record["text"],
our scores come from probs_train_filtered
probs_train_filtered[i][j] is the probability the sample i belongs to class j
prediction=[("HAM", probs_train_filtered[i][0]), # 0 for HAM

("SPAM", probs_train_filtered[i][1])], # 1 for SPAM
prediction_agent="LabelModel",
annotation=[gold_label]

)
records.append(item)

[37]: rb.log(records=records, name="yt_filtered_classified_sample_with_annotation")

[37]: BulkResponse(dataset='yt_filtered_classified_sample_with_annotation', processed=1568,␣
→˓failed=0)

Using the Annotation mode, you and other users could review the labels proposed by the Snorkel model and refine the
training set, with a similar exploration pattern as we used for defining LFs.

74 Chapter 6. Community

https://docs.rubrix.ml/en/latest/reference/rubrix_webapp_reference.html#annotation-mode

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

6.9.6 4. Training and evaluating a classifier

The next thing we can do with our data is training a classifier using some of the most popular libraries such as Scikit-
learn, Tensorflow or Pytorch. For simplicity, we will use scikit-learn, a widely-used library.

[41]: from sklearn.feature_extraction.text import CountVectorizer

vectorizer = CountVectorizer(ngram_range=(1, 5)) # Bag Of Words (BoW) with n-grams
X_train = vectorizer.fit_transform(df_train_filtered.text.tolist())
X_test = vectorizer.transform(df_test.text.tolist())

Since we need to tell the model the class for each sample, and we have probabilities, we can assign to each sample the
class with the highest probability.

[42]: from snorkel.utils import probs_to_preds

preds_train_filtered = probs_to_preds(probs=probs_train_filtered)

And then build the classifier

6.9. Using Rubrix and Snorkel for human-in-the-loop weak supervision 75

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

[]: from sklearn.linear_model import LogisticRegression

Y_test = df_test.label.values

sklearn_model = LogisticRegression(C=1e3, solver="liblinear")
sklearn_model.fit(X=X_train, y=preds_train_filtered)

[46]: print(f"Test Accuracy: {sklearn_model.score(X=X_test, y=Y_test) * 100:.1f}%")

Test Accuracy: 91.6%

Let’s explore how our new model performs on the test data, in this case the annotation comes from the test set:

[47]: records = []
for index, record in df_test.iterrows():

preds = sklearn_model.predict_proba(vectorizer.transform([record["text"]]))
preds = preds[0]
item = rb.TextClassificationRecord(

inputs=record["text"],
prediction=[("HAM", preds[0]), # 0 for HAM

("SPAM", preds[1])], # 1 for SPAM
prediction_agent="MyModel",
annotation=["SPAM" if record.label == 1 else "HAM"]

)
records.append(item)

[48]: rb.log(records=records, name="yt_my_model_test")

[48]: BulkResponse(dataset='yt_my_model_test', processed=250, failed=0)

This exploration is useful for error analysis and debugging, for example we can check all incorrectly classified examples
using the Prediction filters:

76 Chapter 6. Community

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

6.9.7 Summary

In this tutorial, we have learnt to use Snorkel in combination with Rubrix for data programming workflows.

6.9.8 Next steps

We invite you to check our other tutorials and join our community, a good place to start is our discussion forum.

6.10 Python client API

Here we describe the python client API of Rubrix that we divide into two basic modules:

• Methods: These methods make up the interface to interact with Rubrix’s REST API.

• Models: You need to wrap your data in these data models for Rubrix to understand it.

6.10.1 Methods

This module contains the interface to access Rubrix’s REST API.

rubrix.delete(name)
Delete a dataset.

Parameters name (str) – The dataset name.

Return type None

Examples

>>> rb.delete(name="example-dataset")

rubrix.init(api_url=None, api_key=None, timeout=60)
Init the python client.

Passing an api_url disables environment variable reading, which will provide default values.

Parameters
• api_url (Optional[str]) – Address of the REST API. If None (default) and the env vari-

able RUBRIX_API_URL is not set, it will default to http://localhost:6900.

• api_key (Optional[str]) – Authentification key for the REST API. If None (default) and
the env variable RUBRIX_API_KEY is not set, it will default to a not authenticated connection.

• timeout (int) – Wait timeout seconds for the connection to timeout. Default: 60.

Return type None

6.10. Python client API 77

https://github.com/recognai/rubrix/discussions

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

Examples

>>> rb.init(api_url="http://localhost:9090", api_key="4AkeAPIk3Y")

rubrix.load(name, snapshot=None, ids=None, limit=None)
Load dataset/snapshot data to a pandas DataFrame.

Parameters
• name (str) – The dataset name.

• snapshot (Optional[str]) – The dataset snapshot id.

• ids (Optional[List[Union[str, int]]]) – If provided, load dataset records with
given ids. Ignored for snapshots.

• limit (Optional[int]) – The number of records to retrieve.

Returns The dataset as a pandas Dataframe.

Return type pandas.core.frame.DataFrame

Examples

>>> dataframe = rb.load(name="example-dataset")

rubrix.log(records, name, tags=None, metadata=None, chunk_size=500)
Log Records to Rubrix.

Parameters
• records (Union[rubrix.client.models.TextClassificationRecord, rubrix.
client.models.TokenClassificationRecord, Iterable[Union[rubrix.
client.models.TextClassificationRecord, rubrix.client.models.
TokenClassificationRecord]]]) – The record or an iterable of records.

• name (str) – The dataset name.

• tags (Optional[Dict[str, str]]) – A dictionary of tags related to the dataset.

• metadata (Optional[Dict[str, Any]]) – A dictionary of extra info for the dataset.

• chunk_size (int) – The chunk size for a data bulk.

Returns Summary of the response from the REST API

Return type rubrix.client.models.BulkResponse

Examples

>>> record = rb.TextClassificationRecord(
... inputs={"text": "my first rubrix example"},
... prediction=[('spam', 0.8), ('ham', 0.2)]
...)
>>> response = rb.log(record, name="example-dataset")

rubrix.snapshots(name)
Retrieve dataset snapshots.

Parameters name (str) – The dataset name whose snapshots will be retrieved.

78 Chapter 6. Community

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

Returns A list of snapshots.

Return type List[rubrix.client.models.DatasetSnapshot]

Examples

>>> snapshot_list = rb.snapshots(name="example-dataset")

6.10.2 Models

This module contains the data models for the interface

class rubrix.client.models.BulkResponse(*, dataset, processed, failed=0)
Data info for bulk results.

Parameters
• dataset (str) – The dataset name.

• processed (int) – Number of records in bulk.

• failed (Optional[int]) – Number of failed records.

Return type None

class rubrix.client.models.DatasetSnapshot(*, id, task, creation_date)
The dataset snapshot info.

Parameters
• id (str) – Id of the snapshot.

• task (str) – Task of the snapshot.

• creation_date (datetime.datetime) – Creation date of the snapshot.

Return type None

class rubrix.client.models.TextClassificationRecord(*args, inputs, prediction=None,
annotation=None, prediction_agent=None,
annotation_agent=None, multi_label=False,
explanation=None, id=None, metadata=None,
status=None, event_timestamp=None)

Record for text classification

Parameters
• inputs (Union[str, List[str], Dict[str, Union[str, List[str]]]]) – The

inputs of the record

• prediction (Optional[List[Tuple[str, float]]]) – A list of tuples containing the
predictions for the record. The first entry of the tuple is the predicted label, the second entry
is its corresponding score.

• annotation (Optional[Union[str, List[str]]]) – A string or a list of strings (mul-
tilabel) corresponding to the annotation (gold label) for the record.

• prediction_agent (Optional[str]) – Name of the prediction agent.

• annotation_agent (Optional[str]) – Name of the annotation agent.

6.10. Python client API 79

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

• multi_label (bool) – Is the prediction/annotation for a multi label classification task?
Defaults to False.

• explanation (Optional[Dict[str, List[rubrix.client.models.
TokenAttributions]]]) – A dictionary containing the attributions of each token to
the prediction. The keys map the input of the record (see inputs) to the TokenAttributions.

• id (Optional[Union[int, str]]) – The id of the record. By default (None), we will
generate a unique ID for you.

• metadata (Dict[str, Any]) – Meta data for the record. Defaults to {}.

• status (Optional[str]) – The status of the record. Options: ‘Default’, ‘Edited’, ‘Dis-
carded’, ‘Validated’. If an annotation is provided, this defaults to ‘Validated’, otherwise ‘De-
fault’.

• event_timestamp (Optional[datetime.datetime]) – The timestamp of the record.

Return type None

classmethod input_as_dict(inputs)
Preprocess record inputs and wraps as dictionary if needed

class rubrix.client.models.TokenAttributions(*, token, attributions=None)
Attribution of the token to the predicted label.

In the Rubrix app this is only supported for TextClassificationRecord and the multi_label=False case.

Parameters
• token (str) – The input token.

• attributions (Dict[str, float]) – A dictionary containing label-attribution pairs.

Return type None

class rubrix.client.models.TokenClassificationRecord(*args, text, tokens, prediction=None,
annotation=None, prediction_agent=None,
annotation_agent=None, id=None,
metadata=None, status=None,
event_timestamp=None)

Record for a token classification task

Parameters
• text (str) – The input of the record

• tokens (List[str]) – The tokenized input of the record. We use this to guide the annota-
tion process and to cross-check the spans of your prediction/annotation.

• prediction (Optional[List[Tuple[str, int, int]]]) – A list of tuples containing
the predictions for the record. The first entry of the tuple is the name of predicted entity, the
second and third entry correspond to the start and stop character index of the entity.

• annotation (Optional[List[Tuple[str, int, int]]]) – A list of tuples containing
annotations (gold labels) for the record. The first entry of the tuple is the name of the entity,
the second and third entry correspond to the start and stop char index of the entity.

• prediction_agent (Optional[str]) – Name of the prediction agent.

• annotation_agent (Optional[str]) – Name of the annotation agent.

• id (Optional[Union[int, str]]) – The id of the record. By default (None), we will
generate a unique ID for you.

80 Chapter 6. Community

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

• metadata (Dict[str, Any]) – Meta data for the record. Defaults to {}.

• status (Optional[str]) – The status of the record. Options: ‘Default’, ‘Edited’, ‘Dis-
carded’, ‘Validated’. If an annotation is provided, this defaults to ‘Validated’, otherwise ‘De-
fault’.

• event_timestamp (Optional[datetime.datetime]) – The timestamp of the record.

Return type None

rubrix.client.models.limit_metadata_values(metadata)
Checks metadata values length and apply value truncation for large values

Parameters metadata (Dict[str, Any]) –

Return type Dict[str, Any]

6.11 Rubrix UI

This section contains a quick overview of Rubrix web-app’s User Interface (UI).

The web-app has two main pages: the Home page and the Dataset page.

6.11.1 Home page

The Home page is the entry point to Rubrix Datasets. It’s a searchable and sortable list of datasets with the following
attributes:

• Name
• Tags, which displays the tags passed to the rubrix.log method. Tags are useful to organize your datasets by

project, model, status and any other dataset attribute you can think of.

• Task, which is defined by the type of Records logged into the dataset.

• Created at, which corresponds to the timestamp of the Dataset creation. Datasets in Rubrix are created by
directly using rb.log to log a collection of records.

• Updated at, which corresponds to the timestamp of the last update to this dataset, either by
adding/changing/removing some annotations with the UI or via the Python client or the REST API.

6.11.2 Dataset page

The Dataset page is the workspace for exploring and annotating records in a Rubrix Dataset. Every task has its own
specialized components, while keeping a similar layout and structure.

Here we describe the search components and the two modes of operation (Explore and Annotation).

The Rubrix Dataset page is driven by search features. The search bar gives users quick filters for easily exploring and
selecting data subsets. The main sections of the search bar are following:

6.11. Rubrix UI 81

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

Fig. 1: Rubrix Home page view

Search input

This component enables:

Full-text queries over all record inputs.

Queries using Elasticsearch’s query DSL with the query string syntax, which enables powerful queries for advanced
users, using the Rubrix data model. Some examples are:

inputs.text:(women AND feminists) : records containing the words “women” AND “feminist” in the inputs.text
field.

inputs.text:(NOT women) : records NOT containing women in the inputs.text field.

inputs.hypothesis:(not OR don't) : records containing the word “not” or the phrase “don’t” in the in-
puts.hypothesis field.

metadata.format:pdf AND metadata.page_number>1 : records with metadata.format equals pdf and with meta-
data.page_number greater than 1.

NOT(_exists_:metadata.format) : records that don’t have a value for metadata.format.

predicted_as:(NOT Sports) : records which are not predicted with the label Sports, this is useful when you have
many target labels and want to exclude only some of them.

82 Chapter 6. Community

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-string-query.html#query-string-syntax

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

Fig. 2: Rubrix search input with Elasticsearch DSL query string

Predictions filters

This component allows filtering by aspects related to predictions, such as:

• predicted as, for filtering records by predicted labels,

• predicted by, for filtering by prediction_agent (e.g., different versions of a model)

• predicted ok or ko, for filtering records whose predictions are (or not) correct with respect to the annotations.

Annotations filters

This component allows filtering by aspects related to annotations, such as:

• annotated as, for filtering records by annotated labels,

• annotated by, for filtering by annotation_agent (e.g., different human users or dataset versions)

Fig. 3: Rubrix annotation filters

Status filter

This component allows filtering by record status:

• Default: records without any annotation or edition.

• Validated: records with validated annotations.

• Edited: records with annotations but not yet validated.

6.11. Rubrix UI 83

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

Fig. 4: Rubrix status filters

Metadata filters

This component allows filtering by metadata fields. The list of filters is dynamic and it’s created with the aggregations
of metadata fields included in any of the logged records.

Active query parameters

This component show the current active search params, it allows removing each individual param as well as all params
at once.

Fig. 5: Active query params module

Explore mode

This mode enables users to explore a records in a dataset. Different tasks provide different visualizations tailored for
the task.

Annotation mode

This mode enables users to add and modify annotations, while following the same interaction patterns as in the explore
mode (e.g., using filters and advanced search), as well as novel features such as bulk annotation for a given set of search
params.

84 Chapter 6. Community

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

Fig. 6: Rubrix Text Classification Explore mode

Fig. 7: Rubrix Token Classification (NER) Explore mode

6.11. Rubrix UI 85

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

Fig. 8: Rubrix Text Classification Annotation mode

Fig. 9: Rubrix Token Classification (NER) Annotation mode

86 Chapter 6. Community

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

6.12 Developer documentation

Here we provide some guides for the development of Rubrix.

6.12.1 Development setup

To set up your system for Rubrix development, you first of all have to fork our repository and clone the fork to your
computer:

git clone https://github.com/[your-github-username]/rubrix.git
cd rubrix

To keep your fork’s master branch up to date with our repo you should add it as an `upstream remote branch
<https://dev.to/louhayes3/git-add-an-upstream-to-a-forked-repo-1mik`_:

git remote add upstream https://github.com/recognai/rubrix.git

Now go ahead and create a new conda environment in which the development will take place and activate it:

conda env create -f environment_dev.yml
conda activate rubrix

Once you activated the environment, it is time to install Rubrix in editable mode with its server dependencies:

pip install -e .[server]

The last step is to build the static UI files in case you want to work on the UI:

bash scripts/build_frontend.sh

Now you are ready to take Rubrix to the next level

6.12.2 Building the documentation

To build the documentation, make sure you set up your system for Rubrix development. Then go to the docs folder in
your cloned repo and execute the make command:

cd docs
make html

This will create a _build/html folder in which you can find the index.html file of the documentation.

6.12. Developer documentation 87

https://guides.github.com/activities/forking/
https://github.com/recognai/rubrix

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

88 Chapter 6. Community

PYTHON MODULE INDEX

r
rubrix, 77
rubrix.client.models, 79

89

Rubrix, Release 0.1.1.dev0+gf4ed7bd.d20210614

90 Python Module Index

INDEX

B
BulkResponse (class in rubrix.client.models), 79

D
DatasetSnapshot (class in rubrix.client.models), 79
delete() (in module rubrix), 77

I
init() (in module rubrix), 77
input_as_dict() (rubrix.client.models.TextClassificationRecord

class method), 80

L
limit_metadata_values() (in module

rubrix.client.models), 81
load() (in module rubrix), 78
log() (in module rubrix), 78

M
module

rubrix, 77
rubrix.client.models, 79

R
rubrix

module, 77
rubrix.client.models

module, 79

S
snapshots() (in module rubrix), 78

T
TextClassificationRecord (class in

rubrix.client.models), 79
TokenAttributions (class in rubrix.client.models), 80
TokenClassificationRecord (class in

rubrix.client.models), 80

91

	What’s Rubrix?
	Quickstart
	Use cases
	Design Principles
	Next steps
	Community
	Setup and installation
	1. Install the Rubrix Python client
	2. Setup and launch the webapp
	Using docker-compose (recommended)
	Executing the server code manually
	Checking your webapp and REST API

	3. Testing the installation by logging some data
	Next steps

	Concepts
	Rubrix Data model
	Dataset
	Snapshot
	Record
	Text classification record
	Multi-label text classification record
	Token classification record

	Task
	Annotation
	Prediction
	Metadata

	Methods
	rb.init
	rb.log
	rb.load
	rb.snapshots
	rb.delete

	Tasks
	Supported tasks
	Text classification
	Token classification

	Tasks on the roadmap
	Natural language processing
	Computer vision
	Speech

	Monitoring and collecting data from third-party apps
	What does our streamlit app do?
	How to run the app
	Rubrix integration

	Rubrix Cookbook
	Hugging Face Transformers
	Text Classification
	Inference
	Training

	Token Classification

	spaCy
	Token Classification
	NER
	POS tagging

	Flair
	Text Classification
	Token Classification
	NER
	POS tagging

	Stanza
	Text Classification
	Token Classification
	POS tagging
	NER

	🤗 Using Rubrix to explore NLP data with Hugging Face datasets and transformers
	Introduction
	Install tutorial dependencies
	Setup Rubrix
	1. Storing and exploring text classification training data
	Text classification with the tweet_eval dataset (Emoji classification)
	Natural language inference with the MRPC dataset
	Multilabel text classification with go_emotions dataset

	2. Storing and exploring token classification training data
	Named-Entity Recognition with wnut17 dataset
	Part of speech tagging with conll2003 dataset

	3. Exploring predictions
	Agnews and zeroshot classification
	First approach
	Second approach

	Summary
	Next steps

	✨ Using Rubrix with spaCy
	Introduction
	Install tutorial dependencies
	Setup Rubrix
	Our dataset
	Logging spaCy NER entities into Rubrix
	Using a Transformer-based pipeline
	Using a smaller but more efficient pipeline

	Exploring and comparing en_core_web_sm and en_core_web_trf models
	Summary
	Next steps

	🧪 Node classification with kglab and PyTorch Geometric
	Our use case in a nutshell
	Install kglab and Pytorch Geometric
	1. Loading and exploring the recipes knowledge graph
	2. Representing our knowledge graph as a PyTorch Tensor
	3. Building a training set with Rubrix
	Setup Rubrix
	Preparing our raw dataset of recipes and ingredients
	Logging into Rubrix
	Annotation session with Rubrix (optional)
	Loading our labelled records and create a train_test split (optional)
	Creating PyTorch train and test sets

	4. Creating a Subgraph of recipe and ingredient nodes
	5. Semi-supervised node classification with PyTorch Geometric
	Graph Convolutional Networks
	Relational Graph Convolutional Networks
	Creating a PyG subgraph
	Defining a basic Relational Graph Convolutional Network
	Create and visualizing our model
	Training our RGCN
	Model visualization

	6. Using our model and analyzing its predictions with Rubrix
	Analizing predictions over the test set
	Analizing predictions over unseen nodes (and potentially relabeling them)

	Exercise 1: Training experiments with PyTorch Lightning
	Exercise 2: Bootstrapping annotation with a zeroshot-classifier

	🐠 Using Rubrix and Snorkel for human-in-the-loop weak supervision
	Introduction
	What is weak supervision? and Snorkel?
	This tutorial

	Install Snorkel, Textblob and spaCy
	1. Spam classification with Snorkel
	The dataset
	Labeling functions

	2. Extending and finding labeling functions with Rubrix
	Setup Rubrix
	Exploring the training set with Rubrix for initial inspiration
	Exploring and improving heuristic LFs
	Exploring third-party models LFs with Rubrix
	Textblob

	3. Checking and curating programatically created data
	4. Training and evaluating a classifier
	Summary
	Next steps

	Python client API
	Methods
	Models

	Rubrix UI
	Home page
	Dataset page
	Search input
	Predictions filters
	Annotations filters
	Status filter
	Metadata filters
	Active query parameters
	Explore mode
	Annotation mode

	Developer documentation
	Development setup
	Building the documentation

	Python Module Index
	Index

